Sound insulation quality in Dutch dwellings

Eddy Gerretsen
TNO TPD, Delft, The Netherlands; Email: gerretsen@tpd.tno.nl

Introduction

In the context of the EAA symposium on Building acoustic quality, an overview is given of the current situation in Germany, Belgium and the Netherlands. The topics considered are the current common building techniques, the legal minimum requirements, the desirable acoustic quality and the building techniques to achieve a higher acoustic quality.

Current common building techniques

The current building techniques for dwellings uses generally heavy building elements. Typical separation walls are made of brick or concrete of 500 to 600 kg/m² and separation floors are concrete floors of 450 to 600 kg/m². For row-houses also cavity walls are used, typically 2x 200 to 350 kg/m², but this is a minority nowadays. To fulfill the legal requirements with these walls and floors, certainly the lighter ones, not all types of connected building elements are allowable as inner walls or facades. Much of the dwellings comply with the guideline NPR 5070, which specifies the allowable connected elements depending on the type of separation wall; see example in Figure 1.

Legal minimum requirements

The legal minimum requirements are specified in the Building Code (Bouwbesluit) on the basis of the former standard NEN 1070, using specific Dutch single number ratings not for a room but for a given type of separation wall; connection details specified also in the guideline NPR 5070.

The permission to start building belongs to the local authorities that can also check afterwards. A few local authorities only do actual measurements; most of the time those are focussed on the sound insulation of the façade in order to check whether the subsidized improvement has been indeed achieved. However, from various studies it shows that nowadays normally these legal requirements are met for new built houses.

Acoustic quality classes

The renewed version of NEN 1070 specifies five quality classes using the European single number ratings with spectrum adaptation terms. The insulation requirements for each class are deduced from the acceptable received sound level, taking into account the type of sound, temporal variations and subjective rating. Table 2 gives these requirements for two classes, III and II.

<table>
<thead>
<tr>
<th>Aspect, quantity</th>
<th>Class III</th>
<th>Class II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airborne sound</td>
<td>D_{nl,A}–D_{nl,w}+C_{tr}</td>
<td>>52</td>
</tr>
<tr>
<td>Impact sound</td>
<td>L_{nT,A}–L_{nT,w}+C_{tr}</td>
<td><53</td>
</tr>
<tr>
<td>Outdoor sound</td>
<td>D_{nA}=D_{nA,1}+C_{tr}</td>
<td>>23-23</td>
</tr>
<tr>
<td>Equipment sound</td>
<td>L_{A,LA}=L_{A,LA,max}+S,A</td>
<td>30-35</td>
</tr>
</tbody>
</table>

Table 2: Requirements of renewed NEN 1070 for two Classes.

Needed building techniques for better quality

Many consider now the acoustic quality class II as the preferred acoustic quality for future sustainable buildings. This requires about a 5 dB better insulation than the current legal level. This is of course possible but does require improved building designs, details and accuracy of production. A new version of the guideline NPR 5070 is in preparation, which also specifies constructions for this higher quality level. Typical separation walls must be preferable cavities walls or otherwise be at least 650 kg/m². To a basic floor of 550 to 650 kg/m² a floating floor have to be added with at least ΔL_{lin}=ΔL_{w}+C_{tr} > 10 to 13 dB. The guideline will have to give much attention to details for the junctions and details for the floating floor construction in order to avoid the bad experience with this type of floors in the sixties and to really realize the higher quality. Since the adaptation terms give more attention to low frequencies, German floating floor experience cannot simply be ‘exported’.

References