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Introduction

Period doubling phenomena are expected to be possi-
ble on self-sustained instruments, at least since the fa-
mous paper by Mc Intyre et al [1]. Some theoretical pa-
pers have been written concerning cylindrical reed (i.e.
clarinet-like) instruments : Kergomard [2],[3] has shown
that for the simple model based upon the Bernoulli equa-
tion, ignoring losses in the resonator, period doubling,
tripling can occur. On the experimental point of view, if
such a behaviour has been observed on a bassoon, it is
difficult to obtain for cylindrical reed instruments. Nev-
ertheless, using a crumhorn with a soft plastic reed, Gib-
iat and Castellengo [4] got period doubling.

The first aim of this paper is to extend the theoretical
analysis when resonator losses are taken into account :
analytical calculation when losses are independent of the
frequency are possible, the corresponding model being
called ”Raman model”, by analogy with the work of Ra-
man on bowed string. The second aim is to confirm the
previous result by using a real time synthesis method [5].

Simple model

When the reed is assumed to act as a simple spring with-
out inertia, which is reasonable at least for the steady-
state regime, it is well known [1] that the functioning of
a reed instrument can be modeled using only two equa-
tions, written e.g.

p(t) =[zxu](t) 5 wu(t)=FIp)]. (1)

where p(t) and u(t) are the acoustic pressure and volume
velocity, respectively, at the input of the instrument. 2(¢)
is the inverse Fourier Transform of the input impedance
of the resonator. F' is a nonlinear function characterizing
the excitation, which can be written, using dimensionless
quantities [2], as follows :

(2)

ifp>y—landu=0 if p<y—1. ~is the static
pressure in the mouth, which is the source of energy (di-
vided by the minimum pressure, pys, for which the reed
channel is closed in static regime), and ( is a parameter
of the embouchure, equal to ( = 0(2fympa/pM)% : o is
the area ratio of the reed opening (at rest) and the tube,
Ym the ratio of the specific heats, and p, the atmospheric
pressure (( is also related to the maximum volume veloc-
ity which can enter in the tube). Despite its simplicity,
the model is rather realistic (see e.g. [6]).

u= (1 =7+pVy—p

For a cylindrical instrument of length ¢, if a zero
impedance is assumed at the end (this approximation
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is not discussed here), the equation for the resonator can
be written as follows :

3)

Pn — Un = _(pn—l + Un—l)

if at each time ¢t = n2f/c, we use the notation p, =
p(n2f/c) and wu, u(n2l/c). Tt has been shown [1]
that this iteration equation, combined with the nonlinear
function F' leads to an iterated map scheme.

Raman model

If losses are independent of frequency, the wavenumber
k =w/cis replaced by k = w/c— ja/l. «is independent
of frequency, and is related to the Raman parameter A by
e~2@ = ). It can be shown that all results obtained for p,
u, F' when a = 0 remain valid when a # 0 by replacing

them by ¢, w, G, respectively, where :

Pn = qn cosh(a) + w, sinh(a) ; (4)
Upn = qp sinh(a) + wy, cosh(a); (5)
Wy =G(qn); gn—wWn = —(gn-1+wn1).  (6)

Therefore, if function G is known, the iterated map can
be generalized using equations (6). Moreover the graph-
ical method used by Maganza et al [7] can also be used.
As an example, the static regime is given by ¢, = 0 ,
and its stability by dG/dq(q = 0) < 0 . The analytical
calculation of G is difficult in general, but its derivative
is obtained from equation (4) and (5):

dG/dq = (dF/dp — tanha) / (1 — dF/dptanha). (7)

Stability of the periodic regime

Thanks to the simplicity of the nonlinear function, all
calculations concerning the periodic regime (with two
points, corresponding to a square signal) are possible an-
alytically, including the stability. It can be checked that
the low limit of stability, when ~ varies, corresponds to
the limit of instability of the static regime (direct bifur-
cation). In the present paper, the upper limit y4oupiing 18
discussed : above this limit, a period doubling can be ob-
tained, as shown when losses are ignored, and also other
regimes with larger periods, or even chaos. We call this
range of parameter v with subharmonics spectra period-
doubling range, even if the period can be larger. It is
actually narrow, because the beating-reed threshold is
not far (see [8]). If the reed is beating (one of the corre-
sponding values of the volume velocity vanishes), it can
be shown that in the common range of parameters, the
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two-points regime is always stable just above the beating
threshold, which is found to be :

(8)

where T' = tanha. [For stronger values of the mouth
pressure, two regimes can be found, with an inverse bi-
furcation corresponding to the saturation mechanism [8]].
If the reed is not beating, it can be shown that the pe-
riod doubling limit Ygousiing increases significantly when
losses increase, depending on the value of the parameter
(" !tanha . This result confirms numerical (ab initio)
calculation given in ref [6]. An important result is that
this limit Yagousting can reach the beating one, Yseating for
a rather small value of the loss parameter, found to be :

Yveating = % [1 + 77 [] +(1-— T2)/C2” .

(9)

For higher losses, the period-doubling range disappears.
A consequence is the difficulty to get period doubling
with clarinet-like instruments : it was already known that
without losses the phenomenon occurs only for rather
high values of ¢ (the period-doubling range tends to zero
when ¢ tends to zero). When losses are taken into ac-
count, the phenomenon can disappear even for non small
values of (. If it is assumed that, for frequency-dependent
losses, the above calculations remain roughly valid if « is
chosen to be the value for the fundamental frequency, the
result can be compared with typical practical situation
: if ¢ = 0.35 , the limit value of the losses is found to
be a = 0.019. For the fundamental frequency, a typical
value of a is 0.025.

tanh o = %gi‘ [1-¢+0(h].

Real-time synthesis

Using the method of ref. [5], we have checked the pre-
vious result. With this method, losses are "exact” only
for the two first impedance peaks, and approximate for
the upper peaks, but it is possible to take into account
one mode of vibration of the reed. It is confirmed that
above a threshold of losses the period doubling range dis-
appears, and the values are very close to the theoretical
ones, with a small influence of the reed resonance. Fig. 1
shows an example of spectrogram obtained for a kind of
crescendo. The value of ( being rather high, period dou-
bling appears. Note that after the period doubling, the
reed beats.

Other cases have been studied : as an example, fixing the
value of 7, a complete route to the chaos is obtained by
successive period doublings when ( increases (see Fig. 2).
This study is unfortunately not easily feasible experi-
mentally, because the reed and mouthpiece parameters
cannot be changed continuously, contrary to the mouth
pressure. The value of the reed resonance frequency does
not affect the previous result.

We can conclude with a question : when choosing the di-
mensions of the instruments and the characterics of the
reed and mouthpiece, are the makers looking for ”nor-
mal” sounds, avoiding both squeak and double-period
sounds ? If yes, the choice of the different parameters
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Figure 1: Spectrogram of a ”crescendo” obtained by real-
time synthesis for high ¢ : the period doubling range appears
clearly, but this result corresponds to weak losses.(¢ = 0.6,
varies from 0.45 to 0.55, a = 0.029). The x-axis is time, the
y-axis is frequency (in kHz).

Figure 2: Variation of the parameter ¢ from 0.3 to 1.1 : a
route to the chaos appears (v = 0.49 , & = 0.029). The x-axis
is time, the y-axis is frequency (in kHz)

is probably rather narrow. Obviously a detailed study
remains to do, including precise experiments, in order to
answer deeply to the question....
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