Ringversuch Messung der Schallimmission 2003

Christoph Lechner

Forum Schall im Umweltbundesamt Wien, Österreich, Email: forum.schall@aon.at

Einleitung

Teilnehmer

Aufgabenstellung

Ringversuchplanung

Das primäre Ziel des Ringversuches ist die Bestimmung der Vertrauensbereiche der Messung und Beurteilung der Schallimmission. In der Planung des Ringversuches wurde daher besonders darauf geachtet, Einflüsse auf die Reproduzierbarkeit der Messungen so weit wie möglich zu minimieren. Eine reale Betriebsanlage, die dem Ringversuch als Emissionsquelle dienen sollte, hätte eine Vielfalt verschiedener Geräusche abstrahlen müssen, um für die unterschiedlichen Charakteristika auch die Vertrauensbereiche der Beurteilungspiegel bilden zu können. Dass die Geräusche auch noch für alle Teilnehmer in konstanter Emission vorhanden hätten sein müssen, schloss reale Betriebsanlagen letztendlich aus. Es fiel daher die Entscheidung auf eine fiktive Betriebsanlage, welche in Form eines Bauakustiklautsprechers Norsonic Dodekaeder Lautsprecher NOR-270 mit Linearverstärker und Signalwiedergabe aus einem CD Player realisiert wurde.

Durch eine elektrische Kalibrierung mittels eines eingebauten Voltmeters im Verstärker wurde die Konstanz der Schallquelle für alle Ringversuchsteilnehmer mit hoher Präzision gewährleistet. Da der Signalpegel mit einer relativen Genauigkeit im Bereich von 1/10 Volt eingestellt werden konnte, war der durch die Signalwiedergabe gegebene Schwankungsbereich der Emission im Vergleich zu den Messabweichungen vernachlässigbar niedrig.

Um den Einfluss von Meteorologie und wechselnden Bodeneffekten so gering wie möglich zu halten, wurde auf einer reflektierenden Fläche in kurzem, nur 5 m von der Quelle entfernten Messradius gemessen. Der Asphaltboden war eben und glatt. Der Einfluss des Windes war für die bei den Messungen vorgefundenen Bedingungen vernachlässigbar.

Messaufgaben

Als Prüfsignale wurden folgende Geräusche ausgewählt (Kurzbeschreibung): Kalibriersignal, Straßenverkehr, Kantenfräse, Stanze, Kettensäge, Alarmsirene, Lüfter

Die Messungen und Auswertungen hatten nach ÖNORM S 5004 [3] zu erfolgen. Der Beurteilungspiegel L_r wurde dabei immer über die Signalzähler zu ermitteln. Eine Umrechnung auf die Bezugszeiten der ÖNORM S 5004 (8 h, 1 h, ½ h) war nicht vorzunehmen, ein Anpassungswert L_Z war allerdings zu vergeben. Der Beurteilungspiegel ergibt sich daher vereinfacht aus dem Messwert für den L_{A,eq} und dem Anpassungswert L_Z zu:

\[L_r = L_{A,eq} + L_Z \] (1)

Bildung des Beurteilungspiegel

Für die zu bewertenden Signale kamen im Wesentlichen Tonhaltigkeit und Impulsungleichheit in Frage. Bei dem Geräusch „Alarmsirene“ wurden aber auch Bewertungen für Informationshaltigkeit abgegeben. Die ÖNORM S 5004

DAGA ‘05 - München
sieht im ersten Schritt der Geräuschbewertung die subjektive Zuordnung durch den Messtechniker vor, erst das Ausmaß der Zuschläge wird durch messtechnische Analysen bestimmt.

Wenn Tonkomponenten deutlich hörbar sind und ihr Vorhandensein durch eine unbewertet ermittelte Terzbandanalyse nachgewiesen werden kann, d.h. wenn der Pegel eines Terzbandes die Pegel der benachbarten Bänder um 5 dB oder mehr übersteigt, beträgt der Anpassungswert +6 dB. Wenn die Tonkomponenten zwar hörbar sind, aber das Terzbandkriterium nicht erfüllt ist, beträgt der Anpassungswert +3 dB. Der Anpassungswert für impuls-haltige Geräusche beträgt +5 dB, wenn die A-bewerteten Maximalpegel bei Anzeigedynamik „Impuls“ sich um mindestens 2 dB von den Maximalpegeln der Anzeigedynamik „schnell“ unterscheiden. Andernfalls beträgt der Anpassungswert +3 dB.

Statistische Berechnungen

Vertrauensbereiche für die Einzahlangaben

<table>
<thead>
<tr>
<th>±R/√2</th>
<th>L_{A,eq}</th>
<th>L_Z</th>
<th>L_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straße</td>
<td>1,1</td>
<td>-</td>
<td>1,1</td>
</tr>
<tr>
<td>Kompressor</td>
<td>2,0</td>
<td>4,9</td>
<td>5,3</td>
</tr>
<tr>
<td>Kantenfräse</td>
<td>2,2</td>
<td>3,4</td>
<td>3,1</td>
</tr>
<tr>
<td>Stanze</td>
<td>1,9</td>
<td>2,0</td>
<td>2,6</td>
</tr>
<tr>
<td>Kettensäge</td>
<td>1,3</td>
<td>5,2</td>
<td>5,7</td>
</tr>
<tr>
<td>Alarmsirene</td>
<td>2,1</td>
<td>3,1</td>
<td>3,4</td>
</tr>
<tr>
<td>Lüfter</td>
<td>2,2</td>
<td>4,3</td>
<td>3,6</td>
</tr>
</tbody>
</table>

Tabelle 1: Zusammenfassung der Vertrauensbereiche für die Einzahlangaben in dB

Ergebnisse

Als Mittelwert für die Vertrauensbereiche ergibt sich für alle Geräusche mit Ausnahme des Straßenverkehrs und der Kettensäge ein Wert von 2 dB. Dieser Vertrauensbereich ist auch, innerhalb der Rundung auf ganze dB, bekannt für die Vertrauensbereiche der Einzahlangaben bauakustischer Messungen sowie für die A bewerteten Schallleistungspegel L_{W,A} bei Emissionsmessungen. Auch für die statistischen Pegel des Straßenverkehrsgeräusches L_{A,1} und L_{A,95} wurde der Vertrauensbereich mit 2 dB ermittelt.

Die Ergebnisse passen auch sehr gut zu den bisher durchgeführten „Vergleichs messungen zur Ermittlung der Vertrauensbereiche bei der Messung der Immission durch Straßenverkehr und durch einen Betrieb“, publiziert im Umweltbundesamt Bericht BE-069 [6].

Literatur

[1] demnächst abrufbar unter URL: http://www.umweltbundesamt.at/publikationen/publikationsliste/?&pub_category_id=17

