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Introduction

A piano tone can be modeled as a short attack phase
followed by a long decay of the string vibrations. This
structure motivates an approximation of the decay by a
sum of exponential damped sinusoids (EDS) for param-
eterization of a piano tone. A matching pursuit (MP)
algorithm is used for extracting the EDS. The dictionary
of the MP is adapted to the signal for reducing compu-
tational complexity. It can be shown, that in the case
of piano music a large amount of signal energy can be
represented by a small number of parameters. These pa-
rameters can be used for typical tasks in music analysis
like music transcription or parameter based audio coding.

Basics

Matching Pursuit

A matching pursuit is an iterative algorithm for sparse
signal decomposition by arbitrary basis functions (dictio-
nary elements) [3]. It does not guarantee the sparsiest de-
composition from a global point of view. Instead, it finds
a nearly optimal decomposition by optimizing the energy
reduction for each iteration. To start MP a residuum is
initialized as the signal itself. At each iteration n the
algorithm reduces the energy of the residuum rn+1 by
subtracting the dictionary element dopt multiplied with
amplitude aopt.

rn+1(t) = rn(t)− aoptdopt (1)

The dictionary elements are typically designed as param-
eterized functions. In [3], a dictionary of gabor functions
is used because of their optimal localization in time and
frequency domain. The usage of EDS as dictionary ele-
ments is motivated by the asymmetric temporal structure
of typical signals in audio processing as mentioned in [1].
Therefore in the following the MP with EDS as dictio-
nary elements is discussed. EDS can be parameterized
as follows1:

y(t) = ae−
t−T

τ cos(2πf(t− T ) + ϕ)u(t) (2)

An unit norm dictionary element can be defined by the
dictionary parameters τk, fk and ϕk as shown in equation
3.

dk(t) =
e
− t

τk cos(2πfkt + ϕk)u(t)
∑

t(e
− t

τk cos(2πfkt + ϕk)u(t))2
(3)

At each iteration n the metric defined in equation 4 is
maximized by the optimal dictionary element dk0 and

1u(t): unit step

the onset T0. The amplitude a0 as shown in equation 5
minimizes the energy of the residuum for this k0 and T0.

[k0, T0] = argmax
k,T

|〈rn, dk(t− T )〉| (4)

a0 = 〈rn, dk0(t− T0)〉 (5)

Therefore the algorithm optimizes T0 and a0 for all dk.
After this, the amplitude a0 and the corresponding pa-
rameters τ0, f0, and ϕ0 of the dictionary element dk0

are optimized by a least squares optimization for further
minimization of the energy of the residuum. Here the
Nelder-Mead simplex method is applied [2]. At least the
residuum is updated as shown in equation 1.
It is possible to reduce the energy of the residuum be-
low any threshold and therefore achieving an arbitrary
accurate approximation of the signal just by applying a
sufficient large number of iterations. For reducing eval-
uation time in our case, the stop condition is defined as
an energy reduction from one iteration to the next lower
than one percent of the energy of the signal itself:

∆En =
∑

t

r2
n−1(t)−

∑
t

r2
n(t) (6)

∆En

E0
<

1
100

(7)

The design of the dictionary for arbitrary signals is an
open problem.

Constant Dictionary

In [1], a constant dictionary is used. Unlike the definition
of dk as shown in equation 3 the ϕk are not part of the set
of parameters but are computed by a metric which finds
a pair of complex conjugated EDS. In this case ϕk can be
computed by the amplitude a0, which is complex for this
metric. Because a parameter set including ϕk as a third
parameter leads to better signal decomposition by only
few additional operations, the simulations for a constant
dictionary use a parameter space with τk, fk and ϕk.
For reducing computational complexity, the τk, fk and
ϕk are quantized in an appropriate way. The dictionary
is defined by all possible combinations of the quantized
parameter values. Typically the quantization of param-
eter space leading to the sparsiest signal decomposition
is not known a priori which leads to the following trade
off:

Small Dictionaries reduce the computational com-
plexity but lead to a suboptimal decomposition.

Large dictionaries usually enable a sparse decomposi-
tion of a wide range of signals at the cost of increas-
ing computational complexity.
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Adaptive Dictionary

To avoid the trade off mentioned earlier for constant dic-
tionaries, the dictionary is adapted to signal properties.
First the spectrogram Rn of the residuum rn is computed
by a short-time Fourier transformation. Frequencies of
interest are evaluated as peaks in the cumulated energy
function E(f).

E(f) =
∑

t

Rn(t, f) (8)

For each peak in E(f) at frequency fk, a dictionary ele-
ment dk is estimated. The remaining parameters τk and
ϕk are estimated by the signal x(t) = Rn(t, fk), which
is a frequency-filtered and subsampled version of the un-
derlying EDS.

τk =
∆t

log(at0/at1)
(9)

ak =
amax

|∑t w(t)e−t/τkcos(2πfkt)e−j2πfkt| (10)

ϕk = argmax
ϕ

∑
t

(
ake

− t
τk cos(2πfkt + ϕ)− rn(t)

)2

(11)

Where ∆t denotes the hopsize and w(t) the window func-
tion of the short-time Fourier transformation, at0 and at1

two neighbouring values of |x(t)|, and amax the maximum
amplitude of |x(t)|. For sparsier signal decomposition the
dictionary adaption can be done several times during the
MP.

Results

MP applied to single piano tones

As a first test set, the piano samples of the University of
Iowa2 are used. In Figure 1, the energy of the residuum
normalized by the energy of the signal itself is plotted
over the number of iterations. First, the MP with adap-
tive dictionary decomposes the signals of the test set.
Then the constant dictionary is generated by quantiza-
tion of this parameter space. Two cases are shown for
the constant and the adaptive dictionary. First, the pi-
ano tone with lowest energy of residuum is shown. Sec-
ond, the mean value of the energy of the residuum over
all piano tones for each iteration is plotted. It can be
seen that the MP with adaptive dictionary performs bet-
ter than the MP with constant dictionary. Therefore only
the performance of the adaptive dictionary is investigated
further.

MP applied to complete songs

The performance of the adaptive dictionary is now eval-
uated on real piano music. The songs are segmented
by an appropriate note based segmentation algorithm,
e.g. [4]. After this, the MP algorithm is applied to each
segment. For Beethoven, Für Elise the energy of the
residuum can be reduced to 12.08% of the original sig-
nal energy. For this energy reduction 10.91 iterations per

2http://theremin.music.uiowa.edu/MIS.html

Figure 1: Comparison between constant and adaptive dic-
tionary on single piano tones. The energy of the residuum
normalized by the energy of the signal over the number of
iterations is plotted. Best cases are plotted with solid lines,
mean cases with dashed lines, squared marker are used for
constant dictionary crossed marker for adaptive dictionary.

segment or equivalent 187.62 parameters per second are
needed. Similar results are obtained for

• Bach, Well-Tempered Piano, Part 1: Prelude A flat
major

• Chopin, Nocturne E flat major Op.9 No.2

• Mozart, Sonata for Piano, B flat major, KV 281,
First Movement

Conclusions and Outlook

It can be shown that, for piano music, a compact param-
eterization of a large amount of signal energy with EDS is
possible. Furthermore the adaptive dictionary performs
better than the constant dictionary.
Future work will consider the usage of the EDS parame-
ters as a feature vector for typical tasks in audio analysis,
such as automatic music transcription, onset detection or
parameter based audio coding.
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