
Options for Modelling Temporal Statistical Dependencies

in an Acoustic Model for ASR

Volker Leutnant, Reinhold Haeb-Umbach

Department of Communications Engineering, University of Paderborn, 33098 Paderborn, Germany

Email: {leutnant,haeb}@nt.uni-paderborn.de

Abstract

In this paper we consider the combination of hidden
Markov models based on Gaussian mixture densities
(GMM-HMM) and linear dynamic models (LDM) as the
acoustic model for automatic speech recognition systems.
In doing so, the individual strengths of both models, i.e.
the modelling of long-term temporal dependencies by the
GMM-HMM and the direct modelling of statistical de-
pendencies between consecutive feature vectors by the
LDM, are exploited. Phone classification experiments
conducted on the TIMIT database indicate the prospec-
tive use of this approach in continuous speech recogni-
tion.
Index Terms: acoustic model, linear dynamic model,
statistical model combination, phone classification

Introduction

Traditionally, automatic speech recognition systems are
based on hidden Markov models with Gaussian mixtures
modelling the state-conditioned feature vector distribu-
tion. The inherent assumption of conditional indepen-
dence, stating that a feature vector’s likelihood solely de-
pends on the current HMM state, makes the search com-
putationally tractable, nevertheless has also been identi-
fied to be a major reason for the lack of robustness. Lin-
ear dynamic models have been proposed to overcome this
weakness by employing a hidden dynamic state process
underlying the observed feature vectors. Though per-
formance of LDMs on phone classification tasks has been
shown to be superior to that of an equivalent static model
(i.e. single-state monophone HMMs with unimodal full
covariance Gaussian emission density), this approach still
cannot compete with the established acoustic models (i.e.
multi-state triphone HMMs with multimodal diagonal
covariance Gaussian emission densities) when it comes
to continuous speech recognition [1].

Nevertheless, it is believed that LDM and GMM-HMM
have complementary strengths to be exploited to achieve
an overall gain in performance. Thus, on the way towards
a hybrid decoder architecture, combination of informa-
tion provided by the LDM and GMM-HMM, respectively,
will be examined in this paper.

Acoustic Models

Speech recognition usually considers the observed feature
vectors to be generated by a stochastic process. Since this
process is unknown, acoustic modelling aims at finding a
representation of it that is a) closely reflecting the (seen
and unseen) data, yet b) being computational tractable.
The acoustic models considered in this paper are the

Gaussian mixture model based HMM and the LDM.

GMM-HMM

The hidden Markov model is the most popular approach
to model the observed features. By introducing a hidden,
discrete-valued state process underlying the observation
process, the likelihood of a sequence of observations yτ

1

given a hypothesised phone ωk is

p(yτ
1 |ωk) ≈ max

qτ

1

τ∏
t=1

p(yt|qt, ωk)P (qt|qt−1, ωk),

where the maximization in the above Viterbi-
approximation has to be carried out over all possible
sequences qτ

1 of hidden states. The state-conditioned fea-
ture vector distribution p(yt|qt, ωk) is usually modelled
as a mixture of M (diagonal covariance) Gaussians

p(yt|qt = j, ωk) =

M∑

i=1

ci,j,k N
(
yt; µi,j,k,Σi,j,k

)
,

with weights ci,j,k, means µi,j,k and covariances Σi,j,k.

LDM

Linear dynamic models have been proposed as an alter-
native acoustic model for phone classification and recog-
nition [1]. The LDM system is based on a hidden, linear,
autoregressive, continuous-valued state process underly-
ing the observation process. A linear measurement equa-
tion relates the hidden state process to the observation.
The likelihood of a sequence of observations yτ

1 given a
hypothesised phone ωk is

p(yτ
1 , ωk) =

τ∏
t=1

p(yt|y
t−1
1 , ωk)

where p(yt|y
t−1
1 , ωk) can be solved analytically if state

process and measurement equation are linear and driven
by (uncorrelated) Gaussian noises, resulting in the stan-
dard Kalman filtering.

Phone Classification

Given a phone alignment of a sequence of N phones ΩN
1

(Ωn ∈ {ω1, ..., ωK}) and a corresponding observation vec-
tor sequence yT

1 of length T , phone classification looks for
the most probable phone sequence given the feature vec-
tor sequence and the alignment. The alignment can be
expressed by a sequence of phone start and end times
{tN−1

0 +1, tN1 }, with t0=0 and tN=T, or equivalently by
a sequence of phone durations lN1 .

Neglecting ”cross-phone” dependencies on the feature
vector level, the posterior probability of a phone se-
quence can be decomposed into a (scaled) m-gram lan-
guage model prior, a (scaled) duration model likelihood
and the acoustic likelihood.
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Bayes’ Decision Rule is thus given by

Ω̂N
1 =arg max

Ω̃N

1

P (Ω̃N
1 |yT

1 , tN−1
0 , lN1 )

=arg max
Ω̃N

1

N∏
n=1

p(ytn

tn−1+1|Ω̃n)
︸ ︷︷ ︸

acoustic
model

p(ln|Ω̃n)γ

︸ ︷︷ ︸
duration
model

P (Ω̃n|Ω̃
n−1
n−m+1)

β

︸ ︷︷ ︸
language
model

,

which can be solved by the Viterbi-Algorithm.

Statistical Model Combination

Finding the optimal phone sequence requires information
from the acoustic, the duration and the language model
to be gathered. Traditionally, the acoustic model is com-
posed of GMM-HMMs. While the GMM-HMMs are
capable of modelling long-term temporal dependencies,
LDMs allow for direct temporal statistical dependencies
between consecutive feature vectors to be modelled. Util-
ising LDMs as an acoustic model for phone classifica-
tion has intensively been studied by Frankel [1], who al-
ready noted that both models have their strengths and
weaknesses and considered their combination by means
of weighted averaging their individual likelihoods for a
given segment and hypothesised phone. In general, sta-
tistical combination of multiple acoustic models can hap-
pen on either the ”likelihood level” or the ”phone poste-
rior level”. This paper focuses on the latter combination
approach, with phone posterior probabilities being com-
puted on wordgraphs [2]. The probability of a sequence
of phones can thus be approximated by the product of
posterior probabilities of involved phones. The following
combination methods have been examined:

• GMM-HMM/LDM: always select either the GMM-HMM
or the LDM; this experiment gives the baselines for all se-
lection and combination methods following;

• Minimum Entropy: select the acoustic model with mini-
mum entropy on the current segment [3];

• Max/Min: select that model to support a phone hypotheses
giving the highest/lowest posterior probability for it;

• Sum/Product: the support for a phone is the weighted
sum/exponentially weighted product of the individual pos-
terior probabilities;

• Inverse Entropy: sum rule with weights inversely propor-
tional to the entropy of the acoustic models [3];

• Entropy-based DS: Dempster-Shafer model combination
[3]; weights of the ignorance models are based on the en-
tropy of the acoustic models;

Experimental Results

Based on phonetic annotations given by the TIMIT cor-
pus [4], training of 61 context-independent LDM and
GMM-HMM phone models has been carried out un-
der the expectation maximization framework, with the
LDMs and GMM-HMMs based on a linear, autoregres-
sive state process of order 1 and a 3–state HMM with
linear topology, respectively. A log-Gaussian duration
model and an unsmoothed phone bigram language model
have been build on the same data. With standard 39-
dimensional MFCC+∆+∆2 feature vectors, likelihoods
for each segment of an utterance have been computed
and stored in wordgraphs, followed by the computation of
phone posterior probabilities for the LDM and the GMM-
HMM. Optimal training and test parameters have been
determined on the TIMIT development set for a GMM
with 20 mixtures, giving an LDM state dimension of 12

and duration and language model scaling factors of 8.

The introduced combination approaches have been eval-
uated on the TIMIT test set for varying numbers of mix-
tures in the GMM-HMM. Classification results on a col-
lapsed phone set of cardinality 39 are displayed below.
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Figure 1: Classification results for a varying number of mix-
tures in the GMM-HMM

With the number of mixtures in the GMM-HMM greater
or equal to 2, all combination methods yield significant
improvements over the best individual model’s classifi-
cation accuracy, with the simple product rule giving the
overall best results. The inverse entropy rule and the
Dempster-Shafer rule perform equally well. Choosing
the weights in the sum, product and Dempster-Shafer

rule different from the default weights used to create fig-
ure 1 (wS=0.5, wP=0.5, wDS=1) further improves the
classification accuracies. However, optimization has to
be carried for each GMM-HMM (i.e. with respect to the
number of states and mixtures) individually.

Conclusions

In this paper we have examined the combination of
GMM-HMM and LDM acoustic models for phone clas-
sification by means of phone posterior probability com-
bination. Computation of phone posterior probabilities
has been carried out on wordgraphs. Significant improve-
ments obtained by all introduced combination methods
motivate further exploration of the acoustic model com-
bination and its application to continuous speech recog-
nition.
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