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Introduction

The separation of drumsounds from drumloops is a desi-
rable signal processing functionality with a wide variety
of applications in music production and music video ga-
mes. Here, drumsounds describes the sound that is audi-
ble, when a drum or percussion instrument is hit. Since
recognition of the involved drums is a prerequisite for
separation, the detection of instrument types and corre-
sponding onsets is necessary. Although machine-learning
based classification of isolated drumsounds has been pro-
ven do be feasible, it is not directly applicable to the pro-
blem of drumloop separation. The main challenge is the
strong overlap of drum spectra when two or more drum-
sounds share the same onset. It leads to erroneous estima-
tion of the involved instruments, e.g., a tom and a hi-hat
appearing simultaneously could easily be misclassified as
being a snare. Different approaches have been proposed
in the literature to overcome that problem, mainly tem-
plate matching [1],[2] vs. decomposition based methods
[3],[4],[5]. We pursue the approach of template matching,
but combine it with a Non-Negative Matrix Factorization
(NMF) in order to derive an initial estimate of the spec-
trogram templates of the involved drumsounds. A heu-
ristic update rule for the templates is described as well
as an expectation-maximization approach to the quasi-
transcription. Due to space limits in this publication, a
formal evaluation is omitted.

Drumloop separation

The proposed separation method exploits the fact that
the most important drums have multiple onsets throug-
hout a drumloop recording. Most of the time, they coinci-
de with onsets of other drums. However, there may partly
isolated occurences of the drumsound. By finding all on-
sets of that drum, it is possible to distill its magnitude
spectrogram template and use the original phase spec-
trogram to resynthesize it into the time domain. As with
melodic instruments, small sound variations between the
different onsets are effectively captured in the phase spec-
trogram, thus allowing the usage of a quasi-static “mo-
ther“ spectrogram.

Detection of onset candidates

The audio signal is transformed into a time-frequency
representation using Short-Term Fourier Transform
(STFT) with 46ms blocksize and 9ms hopsize. This yields
the magnitude spectrogram X and the phase spectro-
gram Φ. Additionally, a spectral envelope representation
V is computed by accumulating the energy in 25 critical
bands covering the frequency range of X. Normalization

of each frequency band by its standard deviation gua-
rantees for equal importance of all drums. Onset candi-
dates t are derived from X by means of peak picking in
the relative difference function. A dynamic threshold is
used to discard small maxima. The spectral envelopes Vt

corresponding to the onset times t are stored for later
processing.

Estimation of drum candidates

Decomposition of V into dmax components is conducted
via NMF, as described in [3]. The NMF-model is given
by V ≈ SA, where S represents the basis spectra (spec-
tral envelopes) of the involved drums and A represents
their time-varying gains (amplitude envelopes). The re-
duced spectrogram V is used as input to NMF in order to
spare computation time. An appropriately chosen subset
of Vt is used to initialize S by sorting all Vt ascending
by their spectral centroid and picking dmax spectra. This
way, the iterative update of A and S gets an initial push
into the desired direction. Consequently, the solution of
the NMF is invariant (in contrast to random initializa-
tion) and there is no permutation problem. In each row
of A (i.e., for the d-th drum candidate), the time-varying
gains around t is accumulated and interpreted as onset
probabilities pt,d.

Spectrogram template adaption

Drum spectrogram template adaption was introduced in
[1]. It is based on virtually stacking all spectrogram ex-
cerpts observed at one drum candidate’s onsets on top
of each other and taking the median for every time-
frequency element. In this work, a similar distillation ap-
proach is pursued. For each drum candidate, a 500ms ex-
cerpt Xt,d is taken from X at every onset time t. The very
first excerpt serves as an initial estimate of the spectro-
gram template Xd and is chosen based on several heuri-
stics (e.g., maximal pt,d). The median calculation is repla-
ced by the more efficient minimum operation. Of course,
taking the minimum bears the danger of discarding too
much information. Thus, every Xt,d contributing to Xd is
multiplied with a boost factor ensuring that the mass of
the most important frequencies (usually a confined area
around the frequency bin of the absolute maximum) is
retained. Although a preliminary quasi-transcription has
been derived by the preceding stages, it is still necessary
to check carefully, which Xt,d can be grouped together
in order to distill the spectrogram template Xd. Therefo-
re, Pearsons’ correlation coefficient r = corr(Xd, Xd,t) is
computed as a similarity measure. To account for slight
variations in the drum onsets, r is computed multiple ti-
mes for intentionally manipulated versions of Xd,t. The-
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se manipulations comprise sub-frame time shift, sub-bin
frequency shift, frequency stretching and nonlinear com-
pression of the magnitude. The shift parameter combina-
tion that maximizes r is stored for reuse in the resynthesis
stage. One important aspect of the spectrogram template
adaption is the removal of subsequent drums occurring
inside an excerpt. Based on the assumption that only
drums with a sharp attack and fast decay occur, extrapo-
lation of the decay slope overwrites the magnitude (which
may contain the attack of the follow-up drums). The ar-
tificially continued decay slope of the drum is derived by
means of linear regression. Beforehand, the magnitude of
Xd,t is logarithmized, thus a linear slope corresponds to
an exponential decay in the original amplitude domain,
which is a reasonable assumption for drums.

Quasi-transcription

This processing step shall derive a reliable quasi-
transcription before starting with the resynthesis. It aims
at deriving more realistic estimates of the onset proba-
bilities pt,d) without erroneous entries originating from
crosstalk effects of other drums. Therefore, the Xd re-
sp. their spectral envelope counterparts Vd are used. In-
tuitively, it becomes clear that 2D spectrogram templa-
tes are more robust for that task than single basis spec-
tra of S, since the time-frequency progression of a drum
shows more distinctive characteristics than its basis spec-
trum alone. The update of pt,d is computed by means of
an expectation-maximization procedure. The assumpti-
on is, that V can be approximated as a weighted sum of
the previously distilled Vd, placed at every onset point t.
Thus, the expectation step consists of accumulating all
Vd weighted with the initial pt,d at every t into V̂ . The

model likelihood is given by Ṽ = V./V̂ , where ./ deno-
tes element-wise division. In the maximization step, the
contribution of each Vd to Ṽ is used to update the pt,d.

Optimal amplification and resynthesis

The resynthesis is realized by inverse STFT (overlap add
method). For each probable onset, an optimally manipu-
lated X̃d is derived from Xd by incorporating the pre-
viously stored shift parameters. Since the X̃d is arbitra-
rily scaled, it is necessary to estimate an optimal ampli-
fication factor before subtracting it locally from X. This
factor is computed iteratively for each time frame based
on a simple heuristic. It is assumed, that at the time of
the onset, the original spectrogram X is made up from a
mixture of X̃d and some other spectral components. By
means of normalization, it is ensured that every frame of
X̃d has equal mass to the corresponding frame of X. A
constant boost factor guarantees, that it even surpasses
the spectrum in X in certain frequency areas. The to-
tal mass of this overshoot is accumulated and subtracted
from the total mass of the template spectrum in that fra-
me. The ratio between overshoot-corrected and original
mass gives a correction factor that is multiplied with that
template spectrum. In practice, this algorithm converges
quickly to a satisfactory amplification factor that adapts
the template spectrum closely to the mixture spectrum.

Capabilities and limitations

The proposed method works well with input material of
moderate complexity i.e., 3-5 different drums with consi-
stent playing style. The method breaks down, when there
is too much variation in the onsets of a certain drum (e.g.,
expressive brush playing on a snare drum). Informal li-
stening tests revealed that idiophones like cymbals are
only of limited separability. They usually exhibit broad-
band spectra that show a lot of variation and overlap
strongly with other drums’ spectra. Also, their extensive
decay generates constant background noise that makes
the distillation of the other drums difficult. In general,
the usage of the original phase spectrogram for resynthe-
sis may lead to audible artifacts.

Conclusions

A novel method for separation of drumsounds from drum-
loop recordings has been presented. Informal listening
tests show, that it provides unprecedented separation
audio quality for drumloops of moderate complexity.
Future work will be directed towards using alternative
time-frequency transformations and finding more robust
update rules for the drum spectrogram templates. In
principle, the presented method is applicable for quasi-
transcription of drums from polyphonic music as well.
It is up to further investigation, if the assumptions ma-
de for drumloops can be transferred to real-world music
recordings.
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