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Abstract

The REMOS (REverberation MOdeling for Speech
recognition) concept for reverberation-robust distant-
talking speech recognition [1] is presented in this paper.
REMOS extends a conventional hidden Markov model
(HMM) trained on close-talking data with a reverbera-
tion model describing the acoustical environment. The
combination of both models is performed during recogni-
tion to match the reverberant observation. Since varying
acoustic conditions only require a reestimation of the re-
verberation model, REMOS is significantly more flexible
than recognition systems trained on reverberant data.

Introduction

When moving from close- to distant-talking automatic
speech recognition (ASR), various new problems arise.
The ASR system will usually have to deal with back-
ground noise and interfering speakers. One of the ma-
jor challenges in distant-talking ASR scenarios, however,
is reverberation, which is captured by the microphones
in addition to the desired signal. Reverberation signifi-
cantly reduces the recognition performance if no counter-
measures are taken. This reduction is caused by the dis-
persive effect of reverberation on the features [2].

There are different techniques to increase the robustness
of ASR systems to reverberation. A popular and power-
ful approach is to train the recognizer’s acoustic model
on matched reverberant data [3], which has the obvious
disadvantage that changing reverberation conditions ne-
cessitate a costly retraining. Other more flexible model
adaptation techniques have been presented, for exam-
ple, in [4] and [5]. All those HMM-based methods suffer
from the assumption that the current observation vector
is conditionally independent of the previous ones, which
is clearly violated in the presence of reverberation.

REMOS is a generic framework especially designed for
reverberation-robust distant-talking ASR to overcome
the conditional independence assumption. The key idea
of REMOS is to combine a conventional clean-speech
HMM network and a statistical reverberation model
(RVM) describing the acoustical environment in the fea-
ture domain. During recognition, the most likely contri-
butions of both the HMM and the RVM to the current
reverberant observation are determined. The main ad-
vantage of REMOS is therefore that changing reverbera-
tion conditions do not require an entire retraining of the
recognizer. It suffices to reestimate the RVM to adapt
REMOS to the new environment.

Effect of Reverberation

Due to its dispersive effect, reverberation strongly in-
fluences the time-frequency pattern of speech signals by
increasing statistical inter-frame correlation. As can be
seen in Fig. 1, the logarithmic melspectral (logmelspec)
features of the reverberant utterance “four, two, seven”
are smeared along the time-axis compared to the clean
version. A given frame is therefore highly depending
on its preceding frames, which contradicts the afore-
mentioned HMMs’ independence assumption.

clean utterance "four, two, seven"
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reverberant utterance "four, two, seven"
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Figure 1: Illustration of the dispersive effect of reverberation
[2].

The REMOS Framework

In order to cope with the changed properties of rever-
berant speech, a generic model describing the effect of
reverberation is desired.

We consider a reverberant time-domain signal x(t), which
is given by the convolution of the room impulse response
(RIR) h(t) with the corresponding clean-speech signal
s(t):

x(t) = h(t) ∗ s(t).

The main idea of the REMOS concept is to describe the
corresponding reverberant feature vector sequence x(k)
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directly in the logmelspec domain by

exp
(
x(k)

)
= exp

(
h(0, k) + s(k)

)
+ exp

(
a(k) + x̂r(k)

)
.

(1)
where

x̂r(k) = log

(
M−1∑

m=1

µhmel(m) ⊙ smel(k −m)

)
(2)

is an approximation of the late reverberant component
and the RVM consists of (for details see, e.g., [1])

• M melspec-feature vectors µhmel(0), . . . , µhmel(M−1)

being a statistical description of the room impulse
response partitioned into M frames,

• h(0, k) describing the early part of the room impulse
response, modeled by a multivariate probability den-
sity function fh(0) in the logmelspec domain,

• and a(k) capturing the uncertainty of the late re-
verberation estimation, modeled by a multivariate
probability density function fa in the logmelspec do-
main.

For recognition, an extended version of the Viterbi algo-
rithm is employed to determine the most likely contribu-
tions of the HMM, i.e., s(k), as well as of the RVM, i.e.,
h(0, k) and a(k). At each step of the extended Viterbi
algorithm, the Viterbi score is therefore weighted by the
outcome of the following inner optimization problem:

max
s(k),h(0,k),a(k)

fs
(
s(k)

)
· fh(0)

(
h(0, k)

)
· fa
(
a(k)

)

subject to (1), (3)

where fs is the output density of the current HMM state
and the late reverberation x̂r(k) is calculated by using
estimates of smel(k−m), m = 1, ...,M−1, cf. (2), known
from former Viterbi steps [1].

Experiments and Conclusions

We carried out connected-digit recognition experiments
based on the TI-digit corpus to evaluate the performance
of REMOS. For a detailed description of the test setup,
we refer to [1]. The tests have been performed in three
different rooms whose characteristics are summarized in
Table 1. Table 2 compares the word accuracies of the RE-
MOS concept to recognizers trained on clean-speech data
and on matched reverberant data, respectively. All three
system use 24 static logmelspec features with single-
Gaussian output densities per HMM state. To obtain
benchmark results, we employed a recognizer trained on
matched reverberant data with 13 mel-frequency cepstral
coefficients (MFCCs), delta coefficients and three Gaus-
sian mixture densities per HMM state.

As can be seen, REMOS clearly outperforms both
logmelspec-based recognizers. Although REMOS is
based on less powerful features and HMMs with single-
Gaussian densities, its performance comes close to that
of a matched reverberantly trained state-of-the-art rec-
ognizer (3G+MFCC+∆) in the most reverberant room
R3. We recall that REMOS can efficiently be adapted

Table 1: Summary of room characteristics: T60 is the rever-
beration time, d is the distance between speaker and micro-
phone, and SRR denotes the Signal-to-Reverberation-Ratio.

Room Type T60 d SRR
R1 lab 300ms 2.0m 4 dB
R2 conf. room 780ms 2.0m 0.5 dB
R3 lecture room 900ms 4.0m -4 dB

Table 2: Comparison of word accuracies in % for rooms R1
to R3 and different recognizers.

R1 R2 R3

clean
76.3 46.7 32.7

(1G+logmel)

matched rev. trained
89.8 81.9 74.5

(1G+logmel)

REMOS
90.5 88.9 88.0

(1G+logmel)

matched rev. trained
98.2 95.0 91.7

(3G+MFCC+∆)

to changing acoustic conditions by simply re-estimating
the RVM, whereas a matched trained recognizer would
have to be retrained, which is in general computation-
ally very demanding and requires a considerable effort
for data collection or generation.

We therefore consider REMOS to be a very flexible
framework for reverberation-robust speech recognition
and see numerous options for further improvements, e.g.,
by extension to multi-Gaussian densities and state-of-
the-art features.
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