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Introduction
The present study concerns the modeling of the human
speech recognition in noisy environments. The intelligibility
of speech is traditionally predicted by the Speech
Intelligibility Index [1] (SII) or the Speech Transmission
Index [2] (STI), considering the long-term-averaged features
respectively of the target speaker and of the masking
sources, as well as the recognition task performed. These
models were developed for steady state impairments and are
not relevant in the case of time varying masking [3].

A method by [3] proposed to predict the Speech Reception
Threshold (SRT) for amplitude modulated noise by
averaging the SII calculated within 10 ms to 30 ms time
windows. The SRT is the signal-to-noise ratio that yields to
an intelligibility of 50%. Even though [3] improved
traditional models for fluctuating masking, it did not provide 
intelligibility scores on their full range from 0% to 100%.

In a recent study, [4] proposed an intelligibility assessment
method based on the performances of an Automatic Speech
Recognizer (ASR) [5] [6] [7]. These so-called microscopic
models present two major assets over traditional approaches
in the evaluation of intelligibility:

- similarly to the human listener, their unique input is
the mono-channel mixture of speech and noise,

- they provide almost instantly phone probability
estimations which can be mapped in real-time onto
human average performances.

The first part of the present study describes the ASR-based
model (ASRp) and the robustness of its predictions in noise 
for wideband speech (50 Hz to 8 kHz band-pass). The
second part compares the ASRp to the SII when speech in
stationary noise is linearly filtered, pointing out the limits of 
the model proposed.

ASR-based intelligibility predictions
The ASR algorithm uses 13 Mel Frequency Cepstral
Coefficients (MFCC) [8] extracted from the acoustic wave in 
time-frames of 25 ms with 70% overlap between adjacent
windows. For each frame, first and second derivatives of
MFCC feature are concatenated to the original MFCC
features forming a 39 elements acoustic feature vector. The
feature vector extracted is used as input to a Multi-Layer
Perceptron (MLP). The MLP is trained on the TIMIT data
base [9] with acoustic features at input and phone labels at
the output as target classes.
The model estimates posterior probability for each of the 39
phonemes of its library (qi) as p(qt

i|xt), where qt
i is the

phoneme i at time-frame t, and xt is the acoustic feature
vector for frame t. Given qt

c the correct phone (reference) at 

a time-frame t, the ASRp is the average probabilities
attributed to qt

c across all N time frames of the sentence, as
given in equation 2.
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A strong correlation between the ASRp and the SII was
verified for various speakers by [4]. Figure 1 illustrates the
correlation between the SII and the ASRp for one speaker
and 10 different sentences masked by stationary speech-
shaped noise at various levels. A 4th order polynomial fitting 
of the ASRp onto the SII scale is given in [4]. The model
matches the predictions of the SII for stationary noise, with
the assets mentioned in the introduction. 

Figure 1: In open circles is the SII. In lighter lines is the
ASR-based intelligibility model (ASRp) for 10 sentences of 
a same speaker; in dots, the average ASRp and its standard 
deviation.

Model robustness to bandwidth reduction
The SII predicts the intelligibility loss not only due to
masking by noise, but also resulting from linear filtering.
This part compares the predictions of the ASRp with those
of the SII in stationary speech-shaped noise for various
bandwidths.

Figure 2 shows SII predictions from the ASRp when a low-
cutoff frequency (Flow) is applied on speech in stationary
noise. The predictions are good for Flow below 510 Hz. For
higher values of Flow, the ASRp may not be used to predict
intelligibility. This limit is acceptable if compared to the
narrow-band telephony bandwidth from 400 Hz to 3500 Hz.

In figure 3, speech in noise is low-pass filtered. The ASRp is 
hardly robust to the loss of upper frequencies, as its
predictions do not fit the SII for high-cutoff frequencies (Fup)
below 6400 Hz.
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Figure 2: In solid lines is the SII, in dashed lines the
predictions from the ASRp. Speech is masked by stationary 
speech-shaped noise. Each color corresponds to a low-
cutoff frequency. Predictions are accurate below 510 Hz.

Figure 3: In solid lines is the SII, in dashed lines the
predictions from the ASRp. Colors correspond to a high-
cutoff frequency. Predictions are accurate above 6400 Hz.

Figure 4 shows the root mean square error (rmse) between
the traditional SII and the mapping of the ASRp onto the SII 
scale for combinations of high- and low-cutoff frequencies.
The model is not acceptable for rmse values above 0.1.

Figure 4: Root mean square error between the SII and the
predictions from the ASRp for bandwidth filtering. Fup and
Flow are resp. high- and low-cutoff frequencies in Hz.

Conclusion
The prediction of intelligibility by traditional means is
limited to stationary listening conditions whereas in real life, 
disturbances such as noise are often fluctuating. In order to
narrow the gap between the human speech understanding
and its models (SII or STI among others), various works [4]
[5] [6] [7] considered the performance of automatic speech
recognizers (ASR) in noise. Band filtering being an
impairment commonly found in speech transmissions, the
present study questioned the accuracy of intelligibility
predictions based on ASR performances as described in [4]
in the presence of noise and band-pass filtering. The model
is robust to low-cut filtering up to 510 Hz, which represents 
a satisfactory limit. It however is unreliable for frequencies
cut below 6400 Hz. This drawback should to be considered
in the planning of future ASR-based intelligibility models.
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