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Introduction 

Today’s most commonly used features for automatic speech 

recognition (ASR), such as the Mel-Frequency Cepstral 

Coefficients (MFCCs) and Perceptual Linear Predictive 

analysis (PLPs), use the spectral envelope as the prime 

carrier of the phonetic identity for the classification process. 

However, the spectral envelope can easily be disrupted by 

additive and convolutional noise, whereas human speech 

perception is much less susceptible by distortions. 

Perceptual experiments indicate that the human auditory 

system analyzes modulation components of a received 

speech signal [1], a process that can be mimicked in signal 

processing by analyzing longer time trajectories of the 

spectral envelope [2]. The temporal dynamics of a speech 

signal, i.e. amplitude modulations, seem to serve more 

reliable cues for robust speech recognition [3-6]. 

In this contribution we provide studies in modulation 

frequency analysis for an environmental noise robust feature 

extraction method. Several variants of modulation extraction 

schemes have been investigated using the Aurora-2 

benchmark task and optimization for parameters such as 

length of temporal analysis window has been performed. 

Modulation Feature Extraction 

In this contribution modulation feature extraction is based on 

the amplitude modulation spectrogram (AMS) [7]. The audio 

signal is spectrally analyzed by a short-time Fourier 

transform (STFT) and by squaring the magnitude of the 

complex spectrogram values the power spectral density is 

obtained. Then certain frequency regions are decomposed 

into a set of critical bands according to the bark frequency 

scale. In the next step longer time trajectories within each 

band of the spectral envelope are analyzed by a second 

STFT. Thus, a representation of the amplitude modulations 

for each center frequency band is obtained. Based on 

perceptual [8-10] and ASR experiments [3,4] modulation 

frequency components outside the range between 2 and 

16 Hz are discarded. This restriction already allows the 

sorting out of influences that were not caused by the speech 

signal itself [5]. In the last step the real or imaginary part of 

the remaining complex AMS coefficients is taken, which is 

then normalized to the unit circle and multiplied by the 

compressed length of the complex pointer. By the use of the 

real or imaginary part phase information are preserved in the 

resulting AMS coefficients. For the compression of the 

complex pointer a third root function is suggested, since a 

logarithmic compression for instance can cause negative 

values, which would lead to unwanted interactions with 

negative values of the real or imaginary part. 

 

Figure 1: Signal processing scheme for computing AMS features. 

AMS Parameter Settings 

Default AMS parameters used within this work are: i) The 

analysis window of the first STFT has length 25 ms and shift 

10 ms; ii) The window of the second STFT has length 

310 ms, which emerged from experiments as the optimal 

window length [6]. The shift remains fixed to 10 ms, 

implying oversampling; iii) The length of the feature vectors 

is reduced to 39 by a principal component analysis (PCA) to 

ensure the comparability to MFCCs that are used as baseline. 

In the further reading these parameter settings are 

abbreviated with AMS
310

. 

Experimental Setup 

The experiments with the presented AMS features are 

performed using the Aurora-2 framework [11]. The Aurora-2 

data is based on TIDigits (clean samples of spoken English 

digit strings) downsampled to 8 kHz. Eight different noise 

types were added to the clean speech data at signal-to-noise 

ratios (SNRs) ranging from 20 dB to -5 dB in 5 dB steps. 

The data were split into two training sets and three test sets. 

The training sets differ in a clean- and a multi-condition 

training. The test sets A and B each comprise four different 

types of noise. The division between test set A and B is 

related to the multi-condition training, since the noise types 

used for set A are also used to add noise to the clean training 

data to create the multi-condition training set. For test set C 

speech data with one noise type from test set A and one from 

B were convolved with a filter that simulates the behavior of 

a telecommunication terminal. The isolated word recognition 

engine of the Aurora-2 framework is based on linear HMMs 

using 18 states per word (including the two non-emitting 

states) and mixtures of three Gaussians per state. Baseline 

results are obtained with MFCCs, which comprise 12 

cepstral coefficients (without the 0
th

 coefficient) and the 

logarithmic frame energy plus the corresponding delta and 

acceleration coefficients (resulting in 39 features for each 

frame). 

Recognition results shown within this contribution only refer 

to the clean-condition training. 
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Emphasizing Phase Information of Amplitude 

Modulations 

This section demonstrates that phase information of 

modulation frequencies contain important cues for speech 

recognition (q.v. [4]). Differences in word error rates (WER) 

between different versions of the AMS features are 

presented and discussed. Therefore, three different AMS 

versions are used, as seen in Table 1. In AMS
310.r3

 the 

complex AMS coefficients are compressed by a third root 

but not multiplied by the normalized real or imaginary part, 

whereby phase information are dropped. By comparing these 

results with the AMS
310.R

 and AMS
310.I

 it can be seen that the 

additional phase information within the real and imaginary 

part significantly improves recognition results. Furthermore, 

it can be observed that the imaginary part offers advantages 

over the real part. This property can be explained by 

considering the modulation transfer functions (MTF) of the 

used Fourier basis functions in Figure 2. The transfer 

function of the real part of the Fourier basis function with 

the center frequency at 3,125 Hz illustrates, that this part has 

non-zero mean and, thus, does not attenuate frequencies 

below this center frequency in contrast to the imaginary part 

(q.v. [6] for a more detailed discussion). 

By concatenating AMS
310.I

 features with MFCCs further 

significant improvements in WERs are achieved, which can 

be seen in Table 1. This feature combination reached a total 

relative improvement of 53,5 % for clean-condition training. 

Conclusions 

The results demonstrate that preserving phase information in 

modulation features can significantly increase ASR 

performance. In this context it is shown that an odd analysis 

basis function, which has zero mean, has advantages for 

modulation frequency analysis. This observation can be 

explained by analyzing the corresponding MTFs. 

It is useful to combine the dynamic long-term features of the 

AMS, with short-term MFCC information. Hence, short-

term features, that generally achieve very good ASR 

performances for clean speech, benefit from significantly 

increased noise robustness, due to the additional long-term 

information. On the Aurora-2 task, the best feature set 

presented in this contribution reached an overall relative 

improvement of 53,5 % on clean-condition training. 
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Table 1: Average WERs for the different Aurora-2 test conditions 

and for different AMS feature versions. AMS
310.r3

 represents the 

AMS version of Figure 1, in which the real or imaginary part of the 

AMS is neglected. AMS
310.R

 and AMS
310.I

 represent the AMS 

versions once with the real part and once with the imaginary part. 

Baseline results are given by MFCCs. MFCCs + AMS
310.I

 is the 

concatenation of both feature types. R.I. gives the relative 

improvement of MFCCs + AMS
310.I

 compared to baseline (MFCC). 

ØWER AMS
310.r3

 AMS
310.R

AMS
310.I

MFCCs +

AMS
310.I

R.I. 

F
o

r
 
s
e
t
 
A

 
+

 
B

 

Clean 11,10 5,55 5,87 0,98 6,92 

20 dB 12,05 6,69 6,46 1,74 63,81 

15 dB 15,26 8,46 8,84 4,03 69,04 

10 dB 25,88 19,44 18,54 11,54 66,97 

5 dB 46,95 41,67 33,45 30,08 52,74 

0 dB 70,57 72,90 60,84 65,68 22,07 

-5 dB 86,30 92,73 90,84 89,22 2,91 

0
-
2
0

 
d

B
 

Set A 34,83 30,07 25,26 22,36 50,18 

Set B 33,45 29,60 25,99 22,87 59,66 

Set C 51,45 38,01 28,93 20,55 47,65 
 

Figure 2: a) Fourier basis function with 3,125 Hz center frequency.

b) Normalized frequency response of the Fourier basis functions

used to obtain the AMS
310

. 
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