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Introduction

Acoustical recordings in the context of machine diagnosis
usually consist of a multitude of signal components. In
order to analyse the individual components of the ma-
chine regarding their condition or even to detect faults it
is advantageous to handle the signals separately accord-
ing to their origin of generation. To become indepen-
dent from recording situations, we propose single sen-
sor source separation algorithms as preprocessing step
for automatic machine diagnostic algorithms. Because
of the underlying purely additive model, one promising
method for source separation is the non-negative spectro-
gram analysis, e.g. the non-negative matrix factorization
(NMF). The basic NMF can be extended e.g. by sepa-
rating steady state signals, transient signals, and even
harmonic components with time-varying pitch and par-
tial amplitudes. With such extensions, the non-negative
spectrogram analysis can be easily adopted to a wide
range of separation tasks. In this contribution an al-
gorithm is proposed to separate a measured signal of
an electrical machine, containing the superposition of a
steady state motor noise signal and the transient signal
of a defect bearing.

Signal Analysis

We assume mixtures of three different types of input sig-
nals: steady state (sst) and transient (str) components
with arbitrary, constant spectra and harmonic signals
(sha) with time-varying pitch. x is the monaural time-
discrete mixture:

x = sst + str + sha . (1)

For analysis, the mixture is transformed by the short-
time Fourier transform (STFT) into a spectrogram
X(k, t) with frequency bins 0 ≤ k < K and temporal
indices 0 ≤ t < T . We use the square root of Hann win-
dow as analysis and synthesis window with an overlap of
50 %.

Non-Negative Spectrogram Separation

The components sst and str can be separated by non-
negative matrix factorization, explained e.g. in [1]. In
the same thesis, separation of components with time-
varying pitch is done by non-negative matrix deconvo-
lution (NMD). The main restrictions for NMD are first,
the necessity of logarithmic frequency analysis making

the signal synthesis more complex and second, the as-
sumption of constant relative amplitudes for the single
partials. This assumption is generally not true, e.g. in
the case of resonances in the transfer path between sound
source and sound receiver. Therefore, we propose a non-
negative analysis with different algorithms for harmonic
factorization and noise factorization.
In the following, the separation of X(k, t) is done by
minimizing the β-divergence between the approximat-
ing model and the magnitude-spectrogram in the case
of β = 2 (Euclidean distance) or the power-spectrogram
in the case of β = 0 (Itakura-Saito distance), see also [2].
Therefore, we define the matrix V to approximate by

V(k, t) = |X(k, t)|2−
β
2 . (2)

For simpler description in frequency domain, we approx-
imate the main-lobe of the analysis window by

W̃ (k, k0) = e
−

(k−k0)2

σ2 . (3)

Because the main-lobe of the analysis window depends
on the definition of V, we set σ2 = 3

2log(4−β) as a good

heuristic. The overall model of V(k, t) is described by

Vha(k, t) =

N∑

n=1

an(t)W̃ (k, k0(t, n)) (4)

Vst(k, t) = B(k, 1) ·G(1, t) (5)

Vtr(k, t) = B(k, 2) ·G(2, t) (6)

Ṽ(k, t) = Vha(k, t) +Vst(k, t) +Vtr(k, t) (7)

⇒ V(k, t) ≈ Ṽ(k, t) (8)

with an(t) ≥ 0 being the non-negative amplitude, and
k0(t, n) being the pitch in discrete frequency-bins of the
n-th partial in time frame t. The noise is modelled by
NMF with two constant spectra stored in the columns of
matrix B and two envelopes stored in the rows of matrix
G. The non-negativity of all components ensures herein
a purely additive model.
The multiplicative update rules of NMF

B(k, i) = B(k, i) ·

∑
t

V(k,t)

Ṽ
β−2

(k,t)
·G(i, t)

∑
t Ṽ

β−1
(k, t) ·G(i, t)

, and (9)

G(i, t) = G(i, t) ·

∑
k

V(k,t)

Ṽ
β−2

(k,t)
·B(k, i)

∑
k Ṽ

β−1
(k, t) ·B(k, i)

, (10)
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Figure 1: Pitch detection with Trellis diagram (∆kmax = 1).

used e.g. in [2] lead to approximations of Vst(k, t) and
Vtr(k, t).
For each of the N partials of Vha we initialize

Y(k, t) =max
(
0,V(k, t)−

n−1∑

l=1

al(t)W̃ (k, k0(t, l))

−

2∑

i=1

B(k, i) ·G(i, t)
)
. (11)

For a given pitch k0(t, n) and non-overlapping functions

W̃ (k, k0(t, n)) the amplitudes an(t) are evaluated by

β = 2: an(t) =

∑
k Y(k, t) · W̃ (k, k0(t, n))∑

k W̃
2 (k, k0(t, n))

, or (12)

β = 0: an(t) =
∑

k

Y(k, t)

W̃ (k, k0(t, n))
. (13)

To find the optimal pitch, we use the Viterbi algorithm
as proposed e.g. in [3]. We limit k0 to k0(t, n− 1) + c <

k0(t, n) < kmax, with kmax and c being user defined con-
stants. The possible values for k0 are the possible states
in the Trellis diagram. For each frame t and each possible
k0(t, n) the amplitudes an(t) are evaluated according to
Equation (12) or (13). With these amplitudes, the local
cost dlocal of each node is defined by the β-divergence dβ :

dlocal =
∑

k

dβ

(
Y(k, t), an(t)W̃ (k, k0(t, n))

)
. (14)

The final cost for each node is defined as the cost in Equa-
tion (14) and the minimum cost of all its predecessor-
states. The predecessor-states are defined by the simple
rule, that k0(t, n) is assumed to be non-decreasing. The
maximum slope of k0(t, n) is limited by the user-defined
parameter ∆kmax, as shown in Figure 1. The final values
of k0(t, n) are defined by the path through the Trellis di-
agram with smallest cost.
One iteration of the final non-negative spectrogram anal-
ysis can be summarised as follows:

• Set G(1, t) = 1 to distinguish between steady state
and transient parts of noise.

• Update matrices B and G (Equations (9-10)).
• Update an(t) and k0(t, n).

The distinction between transient and steady state com-
ponents can be also reached by a temporal continuity cri-
terion, as proposed in [1], but, in our case, steady state
can be modeled by a constant noise during the whole
analysis. Because the update of the harmonic model
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Figure 2: Mixture of a run up of an machine and an additive
transient noise (a defect bearing). The right Figure shows the
estimated harmonic approximation.

needs much more evaluation time and the update of B
and G needs more iterations than the harmonic model,
the first two steps are repeated ten times for each it-
eration, to reduce the overall number of updates of the
harmonic model

Signal Synthesis

The estimated spectrograms of the harmonic component
is evaluated by a filtering operation according to [2]:

S̃ha(k, t) = X(k, t) ·
Vha(k, t)

Ṽ(k, t)
. (15)

The corresponding separated time-domain signals are
evaluated by the inverse STFT. The other components
are evaluated in an analogue way.

Experimental Results

In Figure 2, a run up of an electrical machine is shown.
The left figure shows the increasng frequency and the
time-varying amplitudes of the N different partials due
to resonances. In the right figure, the approximationVha

is shown. It can be seen, that the pitch can be detected
without any errors. The data of the partials (pitch and
amplitudes) is only estimated correctly in the regions of
high amplitudes (resonance frequencies). For such reso-
nances, the proposed pitch detection leads to very robust
results: Even in the case of wrong classification of par-
tials the algorithm is able to detect correct partials in
later time frames.
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