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Abstract

Visual speech features encoding lip movements are al-
most fully independent of acoustical environmental ef-
fects. Recently, they have therefore attracted signifi-
cant attention for the purpose of robust automatic speech
recognition, where they are typically deployed in conjunc-
tion with the conventional acoustical features. In order
to optimally fuse audio and video features, the relative
contribution of each modality to the recognition deci-
sion should be dynamically controlled, e.g. by so-called
stream weights. Training stream weight estimators re-
quires choosing a suitable feature-dependent or model-
dependent reliability measure and an appropriate map-
ping function that maps this measure to the correspond-
ing stream weight. In this paper, we compare different
reliability measures and mapping functions for stream
weight estimation, and we evaluate their performance in
audio-visual speech recognition based on coupled HMMs
for a range of adverse acoustical conditions.

Introduction

Using visual observations in conjunction with the conven-
tional acoustical observations can increase the robustness
of automatic speech recognition (ASR) systems in noisy
environments. This is due to visual observations being
almost independent of acoustical environmental effects
such as additive and convolutive noise. To combine the
video stream, i.e., recordings of the lip movements of the
speaker’s mouth, and the audio stream, different fusion
models have been proposed. In this paper, we use a fusion
model called the coupled hidden Markov model (CHMM)
[1]. In CHMMs, the audio and video modalities are inte-
grated at the state level. The overall score of a coupled
state in a CHMM is computed via
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The score of a coupled state qt = i = {iA, iV } in a
CHMM given the audio-visual observation Ot at time
frame t is evaluated in terms of the emission likelihoods
p (Os

t |q
s
t = is) s ∈ {A, V } of the audio and video states

composing this coupled state. In (1), the so-called stream
weight λt controls the contribution of each stream to
the overall score of the coupled state according to the
stream’s reliability and its information content. The
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stream weights (SWs) should be adaptively adjusted in
order to achieve a reliable performance gain.

In [2], a mapping function (MF) has been used to map
one-dimensional acoustical reliability (confidence) mea-
sures (RMs) to frame-dependent stream weights λt. In
this study, we compare three different acoustical reliabil-
ity measures and five mapping functions to determine the
optimal MF/RM combination for the stream weight esti-
mation task. Two of the reliability measures are model-
dependent, namely the entropy H and the dispersion
D, and the third one, the signal-to-noise-ratio (SNR),
is signal-dependent. The MFs are first- and second-order
exponential functions, first- and second-order polynomial
functions and sigmoidal functions.

In the following section, we present the definitions of all
above reliability measures. We also describe the train-
ing algorithm used to estimate the mapping function pa-
rameters. The results obtained when applying the es-
timated stream weights to a CHMM-based audio-visual
(AV) ASR system are shown in the last section and con-
clusions are drawn.

Stream weight estimation

The entropy H and the dispersion D are model-based
reliability measures that can be estimated given the audio
HMM as:
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Before computing the dispersion as in (3), the LA largest
posteriors p

(
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t

)

should first be arranged in de-
scending order. On the other hand, the posteriors of all
NA states of the audio HMM are used in (2) to estimate
the entropy H. The frame-wise signal-to-noise-ratio can
be estimated via:

SNRt = 10 log

(

St

Nt

)

, (4)

where St and Nt are the estimated signal and noise en-
ergies at time frame t, respectively. The signal and noise
power estimates required to compute these energies can
be obtained using algorithms like improved minima con-
trolled recursive averaging (IMCRA) and a speech pre-
processor like the Wiener filter.
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Each of the three RMs mentioned above are used as an
argument of a one-dimensional function that maps them
to a frame-dependent SW. The parameters of each map-
ping function are estimated in a supervised manner us-
ing least squared error (LSE) optimization. The training
data, i.e., the input arguments and the target outputs,
are estimated as follows: For each data set that contains
speech signals recorded under same acoustical conditions,
i.e. same noise type and level, one input/output tuple is
found. The input is computed by averaging the chosen
RM over all frames of the data set. Thus, all mentioned
RMs have been extracted from the audio stream, which
is sufficient here, since there is just one visual condition,
comprising only high-quality video data. As a target SW
output of each set, a global fixed stream weight is found
via grid search, minimizing word error rate.

Experiments and Results

For evaluation, we have used the Grid audio-visual cor-
pus. We have divided the signals into three sets: A train-
ing set containing 90% of the signals, and a development
and a test set containing 5% each. The training set has
been used to separately train the audio and video HMMs.
The development set has mainly been used to train the
parameters of the MFs. To test the proposed approach
under different acoustical conditions, we have used eight
additional noisy versions of the test and development set.
The noisy signals have been created by adding babble and
white noise signals to the clean signals at four SNR levels
between 0dB and 15dB. The babble and white noise sig-
nals stem from the NOISEX-92 corpus and were chosen
to represent both time-variant and stationary noise.

We have used the first 13 mel-frequency cepstral coeffi-
cients (MFCC) concatenated with their first and second
temporal derivatives as the acoustical observations. The
visual observations are 64-dimensional DCT coefficients
encoding the appearance and shape of the speaker’s
mouth. The corresponding mouth region has been de-
termined automatically by a Viola-Jones face and mouth
detector. The dimensions of the acoustical and visual
observations have finally been reduced to 31 using linear
discriminant analysis (LDA).

The single-modality word HMMs are speaker-dependent,
linear models. The number of states in each HMM is pro-
portional to the number of phonemes contained in this
word with a proportionality factor of 3 for audio HMMs
and 1 for video HMMs. The output probability distribu-
tions of all emitting states are Gaussian mixture models
with 3 mixture components for audio HMMs and 4 for
video HMMs. The Java Audio-visual SPEech Recognizer
(Jasper) has been used for training and recognition.

The results in Tables 1, 2, and 3 show that the first or-
der exponential function with the dispersion as its input
argument gives the best average performance. However,
no single mapping function performs optimally for all re-
liability measures under all acoustical conditions. There-
fore, more complex multiple-dimensional mapping func-
tions will be investigated in future works.

Table 1: AVASR performance obtained using SWs mapped
from the dispersions using five different MFs.

Noise SNR Poly. Poly. exp. exp.
Sigm.

Type [dB] 1st 2nd 1st 2nd

B
ab

b
le

15 91.31 91.06 92.05 90.98 91.51
10 86.71 86.44 87.60 86.56 86.69
5 82.13 81.40 83.53 82.49 81.70
0 80.88 80.68 79.98 81.97 79.88

W
h
it
e

15 91.54 91.22 92.52 90.94 91.81
10 87.64 87.29 89.15 86.97 87.99
5 85.07 84.58 86.28 84.59 85.32
0 83.46 83.24 84.29 84.09 83.57

Clean - 98.74 98.74 98.79 98.73 98.74
Avg. - 87.50 87.18 88.24 87.48 87.47

Table 2: AVASR performance obtained using SWs mapped
from the SNRs using five different MFs.

Noise SNR Poly. Poly. exp. exp.
Sigm.

Type [dB] 1st 2nd 1st 2nd

B
ab

b
le

15 90.87 89.40 89.24 89.36 9082
10 87.55 87.56 87.37 87.86 8783
5 83.14 84.52 84.47 85.00 8426
0 83.42 82.11 84.31 83.43 8430

W
h
it
e

15 88.27 86.68 86.54 86.87 8887
10 82.52 78.60 78.42 78.63 8223
5 80.68 80.19 80.22 81.60 8097
0 81.73 83.68 83.61 84.02 8305

Clean - 98.60 98.69 98.59 98.60 9863
Avg. - 86.31 85.71 85.86 86.15 8677

Table 3: AVASR performance obtained using SWs mapped
from the entropies using five different MFs.

Noise SNR Poly. Poly. exp. exp.
Sigm.

Type [dB] 1st 2nd 1st 2nd

B
ab

b
le

15 90.38 90.28 91.59 90.51 90.64
10 83.90 83.21 85.51 84.47 84.02
5 77.18 73.91 79.05 78.29 76.80
0 76.04 70.91 76.48 77.11 75.36

W
h
it
e

15 90.45 90.69 91.67 90.43 90.63
10 85.31 84.76 87.13 85.69 85.26
5 81.03 79.93 82.81 81.40 81.07
0 79.73 77.33 81.22 80.47 79.68

Clean - 98.88 98.91 98.85 98.83 98.88
Avg. - 84.77 83.33 86.03 85.24 84.70
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