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Introduction

In the context of vibro-acoustic FE analysis the need of
subdomain coupling is an integral part of the calculation
process. The application of methods such as FETI or
BETT assumes an independent subdomain modeling and
discretization, which often results in nonmatching grids.
A commonly used tool to ensure proper solution conti-
nuity through the subdomain interfaces is known as the
Mortar technique. The standard Mortar technique im-
poses at the interfaces a condition of weak continuity on
the solution. On the other hand,due to the relative sparse
matrices one needs to handle during the implementation,
the interest in the nonconforming finite elements stays
constant during the last years.

In the current contribution a Mortar technique is pre-
sented for the solution of the Helmholtz equation dis-
cretized with nonconforming FE elements on nonmatch-
ing grids. The technique has been proven reliable for el-
liptic partial differential equations and holds a potential
for delivering good results and decreasing the computa-
tion time. The aim of this work is to investigate the possi-
ble benefits from both independent meshing and noncon-
forming elements for the solution of the Helmholtz equa-
tion. The results from the application of the approach
are compared to the results obtained for the nonmatch-
ing grids with standard conforming Lagrange elements
and the further implementation of the studied technique
for fluid-structure coupling is discussed.

The Helmholtz equation

In order to investigate the applicability of nonconform-
ing finite elements for the solution of acoustic problems,
respectively sound transmission loss problems, a simple
example of a plane wave propagation in a fluid is initially
taken into consideration. A fluid field, represented by a
unit square domain, is excited at one edge by a time har-
monic plane wave. On the opposite side of the domain
an absorbing condition is introduced. The pressure based
Helmholtz equation

Ap(z,y) + k*p(z,y) =0 (1)

is taken and the related boundary value problem (BVP)
is defined. The plane wave source is determined as Neu-
mann boundary condition

in  xye€l0,1]

I, =0x0,1]
I,=1x[0,1]

(2)
(3)
and the absorbing properties are introduced in the form

of Robin type boundary condition. In the BVP formu-
lation (1)-(3), & is the wave number, w is the angular

Vp(z,y) -n=—iwpV,, on

iwpoCp+ Vp(r,y) -n=0 on
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frequency, pp the fluid density, V;, the normal velocity
and C the absorbing coefficient. With the assignment
of constant normal velocity at all points on the bound-
ary I's, the problem can be reduced to one dimensional
problem, which analytical solution is well known.

_ wpoVy
pla) = —L e (4)

Neither for the analytical solution nor for the numerical
approach damping is considered.

—ikx

Nonconforming FE method

The finite element method is called nonconforming in the
case when the trial functions form a space, which is not
a subspace of the solution space[l]. In this contribu-
tion the term nonconforming is used only for the case
of nonconforming elements. So-called P1 nonconform-
ing elements are presented in particular, which are also
known as lowest order Crouzeix-Raviart element depicted
in Fig. la) for which the degrees of freedom are asso-
ciated with the edge midpoints. Nonconformity result-
ing from nonmatching grids is denoted as a nonmatching
grids case.

P1 nonconforming elements are the simplest nonconform-
ing element type used for the solution of the second or-
der elliptic boundary values problem. The relaxation
of the strict conditions required by the conforming el-
ements, sometimes also called “variational crimes”, give
the nonconforming finite elements a certain number of
advantages, as in the case of weak constraint enforcement
(divergence-free flows in the Stokes problem), variable co-
efficient, curved boundaries and ete. [2]. Since the first
introduction of the Crouzeix-Raviart elements for the so-
lution of the Stokes problem in [3], these have been suc-
cessfully implemented also for solving problems described
by the Poisson equation and have been extensively fur-
ther investigated. In this connection a significant amount
of error analysis are performed, proving that the P1 non-
confoming elements maintain a convergence of the same
order as the corresponding conforming elements. Based
on the information about the flexibility and the good er-
ror estimates encountered by the application of noncon-
forming finite elements for the solution of second order
elliptic partial differential equations, the implementation
of the method for the solution of the Helmholtz equation
has a good potential.

Nonmatching grids: Mortar method

In order to couple different domain discretization schemes
as well as to tackle nonmatching grids at the subdo-



a) b)

Figure 1: a) Pl-nonconforming finite element (lowest or-
der Crouzeix-Raviart finite element) b) PI1-
conforming finite element (Lagrangian finite ele-
ment).

main interfaces the Mortar element method is used. This
method is a domain decomposition technique with non-
overlapping grids that enforces a weak continuity on the
subdomain interfaces instead of pointwise continuity of
the approximation functions. Since the application of
mortaring conditions requests the function on the cou-
pled interfaces to be known, the mortar methods in a case
of P1 conforming and P1 nonconforming meshes differ.

Mortaring Crouzeix-Raviart FE

For the coupling of the nonmatching subdomain dis-
cretization with P1 nonconfoming elements, the mortar-
ing technique presented in [4] is used. As the author sug-
gests one side of the interface I';, corresponding to the
subdomain (2, is chosen as a master 7,,; and the sec-
ond one, corresponding to the subdomain 2, as a slave
Om. i, see Fig. 2. The proposed technique requires that
the trace of the solution of the two adjacent subdomains
is L? projected on a trial mortar space and these two
projections are equal. The mortar space should be de-
termined by the slave mesh and defined on the common
edge, here in particular a natural L? orthogonal basis is
used. The test (mortar) space M (0, ) is introduced,
as a subspace of L?(T';), which consists of all piecewise
constant function on the elements from the nonmortar
(slave) triangulation on the interface. The dimension of
the space M (6y,,x) is equal to the number of elements
(midpoints) on the d,, x. The L? orthogonal projection
is Qm : L*(T;) — M(d,n.x), which is defined according
to:

(Qmpw)m((sm,k) = (pyv)m(ém,k) for Yo € M (1) (5)

And the mortar condition is expressed by the equality of
the projections of the traces onto the test space, repre-
sented for each interface by

(6)

Now can be written the description of the discrete space
Vh which is not a subspace of the H}(2) and consists
of noncontinuous functions. That leads to a modification
in the variational form of the discretized problem.

V= {pn € Xn(Q) : Yt = Ymi C T\ Qubr = Qupi}
(7)

Qmpr = Qmpr-

Mortaring Lagrangian FE

In the case of standard Lagrangian FE the mortaring on
the interfaces of the nonmatching grids have been done by
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Figure 2: Nonmatching domain example with P1 noncon-
forming elements.

means of a Lagrange multiplier technique. In the context
of this approach a strong continuity is enforced for the
flux through the boundary interfaces. One obtains:

a= o) op) e g,
on on

(®)

Here My, is a discrete Lagrange multiplier space. For the
trace of the solution on the interfaces, an integral form
of weak continuity is imposed:

/‘(pk — i) pdl’ 9)

i

The test functions p are chosen from a properly defined
test function space. More details about the application
of the method can be found in [5].

Solution

Complying with the mortaring conditions the matrix for-
mulation of the problem in the cases of conforming (10)
and nonconforming (11) finite element method are writ-
ten:

M, +iwC. —w?K. B\ (p —iwG,

(Mn + iwC), — w2Kn) (B) = (—iw@) (11)

The mortar discretization of the conforming case initial-
izes a saddle point structure of the linear system, which
requires iterative solvers. For the solution of the lin-
ear system, arising from the nonconfoming mortar de-
scretization, an additive Schwarz method is mostly rec-
ommended [4, 6, 7]. Taking into account the relatively
small number of degrees of freedom of the investigated
problem for the solution of both linear system of equa-
tions conjugate gradient method is used without precon-
ditioners. The results achieved for the solution of the
example problem on the nonmatching grids can be seen,
for the real part of the solution in Fig. 3 and for the
imaginary part in Fig. 4.



DAGA 2015 Niirnberg

Figure 3: Real part of the solution.

Figure 4: Imaginary part of the solution

Errors

Considering the error estimates with respect to the
presented domain decomposition methods the investi-
gated problem complies with the theoretical predictions.
Proofs for the error estimates in connection with the mor-
taring techniques are available in [4] (for the nonconfom-
ing mortaring technique) and in [5, 8] (for the applica-
tion of the Lagrange multiplier based mortar method).
In agreement with the previously performed studies and
also to facilitate comparison, the discretizations errors
are given in the L? norm. A special attention has been
given to the analysis of the error between the results ob-
tained from one side on matching grids and from the
other side on nonmatching grids with mortar method ap-
plied. A comparison has been made in a case of domain
discretized with Lagrange FE and with Crouzeix-Raviart
FE. The errors with respect to the degrees of freedom
have been analyzed and the results can be seen in Fig. 5.
As it can be concluded from this figure, with the increase
of degrees of freedom the error convergence rate for the
both finite element types follow a similar path. For pro-
founder error analyses, as well as more examples one can
refer to [9].

Conclusions and Outlook

The proposed approach for the solution of the pressure
based Helmholtz equation confirmed the potential suit-
ability of the nonconforming finite elements method in
acoustics. Considering the achieved results, it should
be pointed out that dealing with nonmatching grids in
this context does not require additional unknowns i.e.
Lagrange multipliers. Mortaring technique used for the
P1 nonconforming domain decomposition method gath-
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Figure 5: Comparison of the convergence performance for
Mortar methods for different finite element types.

ers information from the entire element discretization at
the coupled interfaces, which could be a drawback with
respect to computation time. But on the other hand
new mortaring techniques are already available, which
handle this problem and restrict the necessary informa-
tion to the interface nodes without compromising the
precision. The well known iterative solvers, as the one
based on conjugate gradient method, can be used for the
solutions of the resulting linear systems of equation, as
only a different type of preconditioners can be required.
The Crouzeix-Raviart finte elements have been proven
to deliver satisfactory results after enrichment also for
the solution of the equation of motion, which opens in-
teresting possibilities for the realisation of elasto-acoustic
couplings. As it has been suggested in [10] fluid-structure
interaction could be modeled also with the use of a com-
bination between Crouzeix-Raviart and Raviart-Thomas
finite elements based on the displacement-displacement
formulation. In such a case the spurious modes free
solution of the displacement based Helmholtz equation,
achieved with the help Raviart-Thomas element domain
discretization, could be coupled with enriched Crouzeix-
Raviart elements used for the solid. Therefore the non-
matching grids situation together with the above men-
tioned coupling is a quite promising area of investiga-
tions.

In the context of transmission loss calculation of mul-
tilayered structures the use of independent domain dis-
cretization techniques and an optimal coupling method
between the structures and fluids have always been an
issue.
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