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Introduction

Adjoint equations have attracted great attention in the
field of fluid dynamics as they provide optimal changes of
flow configurations in a computational efficient manner.
Their application covers optimisation, data assimilation,
active control, sensitivity analysis and model reduction
purposes.

In data assimilation adjoint equations are used to adapt
parameters of a model to measurements. The difference
between a computed state and a measurement is to be
minimised, which defines a so called objective function.
In this work the adjoint approach is used to identify
sound source positions and signals from discrete micro-
phone measurements. The Euler equations are consid-
ered as the governing model. As assimilation parameters
sources for mass and momentum are used. The derived
framework is validated by means of a synthetic configu-
ration as well as an experiment.

In addition to the source identification an adjoint based
approach to assess acoustic measurement configurations
is presented.

Adjoint Approach

Following [1] adjoint equations arise by the so called ob-
jective function

J = gT q, (1)

defined as the product of a weighting g and the system
state q. The state q is given as solution of equation

Aq = f, (2)

representing the considered model, governed by e.g. the
linearised Euler equations. The term f on the right hand
side acts as source and is used as control parameter. To
modify J by means of f the linear system (2) is to solved
for every mentioned f .

The use of the adjoint equation

AT q∗ = g (3)

can reduce the computational effort as the following holds

J = gT q = (AT q∗)T q = q∗TAq = q∗T f. (4)

The objective for different f can be computed by a cheap
scalar product, once the adjoint equation is solved. Thus
it allows an efficient determination of the impact of dif-
ferent f . For non linear problems an analogue relation
can be found

δJ = gT δq = q∗T δf. (5)

Adjoint Euler Equations

To follow the aforementioned approach the governing
equations have to be linearised. In context of the in-
dented application the Euler equations are used in the
following formulation.
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Within % denotes the density, uj the velocity in xj-
direction and p the pressure. The energy equation is
formulated in terms of p assuming a constant heat capac-
ity. γ denotes the adiabatic coefficient. The right hand
side f corresponds again to source terms, e.g. mass- and
momentum sources. For sake of clarity the equations are
abbreviated as

∂ta+ ∂xib
i + Ci∂xic = f. (7)

Linearisation with respect to the actual system state q =
[%, uj , p] lead to

∂t
∂aα
∂qβ︸︷︷︸
A

δqβ + ∂xi

∂bα
∂qβ︸︷︷︸
Bi

δqβ + Ci∂xiδqβ + δCi∂xicβ = δf.

(8)

To derive the adjoint the linearised equations are used as
additional constraint and added to the objective function
in a Lagrangian manner.

δJ = gT δq (9)

− q∗T
(
∂tAδq + ∂xiB

iδq + Ci∂xiδq + δCi∂xic− δf
)︸ ︷︷ ︸

=0

The relation holds in an integral sense
∫∫

dΩ with Ω as
space-time measure. However, for sake of clarity the in-
tegrals are not shown. Integration by parts lead to a
formulation for δJ , that is independent from δq as in the
example before.

δJ = δqT g (10)

+ δqTAT∂tq
∗ + δqTBi

T
∂xi

q∗

+ δqT∂xiC
iT q∗ − δqT C̃i∂xic+ q∗T δf.

Time wise and spatial boundary condition arising from
the integration are neglected for clarity. These would
give arise to the adjoint boundary and initial conditions.
The operator C̃i abbreviates

q∗αδC
i
αβ∂xi

cβ = q∗αδqκ
∂Ciαβ
∂qκ

∂xi
cβ . (11)
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Figure 1: Iterative data assimilation loop. Only the tasks
highlighted in green are necessary for sound source identifica-
tion. Expansive operatives are marked by a grey box.

Collecting all terms linear in δq and choosing q∗ to fulfil

∂tq
∗ = −AT−1

Bi
T
∂xiq

∗ −AT−1
∂xiC

iT q∗ (12)

+AT
−1
C̃i∂xic−AT

−1
g,

leads to the change of the objective function

δJ = q∗T δf (13)

in analogue to the introductory example before. Thus the
adjoint equations provide sensitivity information how the
objective is changed by modification of forcing f . The
obtained information can also be interpreted as gradient

∇fJ ≈ q∗, (14)

which holds for infinitesimal small changes. In general
the approach is applied in an iterative manner, see Fig.
1. The forcing f is adapted until the objective function
is sufficiently small. Convergence acceleration methods
like line search or use of non-linear conjugated gradients
can improve the performance.

Pressure Based Objective Function

For acoustic problems the objective function is formu-
lated in terms of pressure.

J =
1

2

∫∫
dΩ

(p− pexp)
2
σxi

σtdΩ (15)

The integral difference between the actual numerical
state p and the measurement pexp is used. Therein the
weightings σ correspond to spatial and temporal weight-
ing functions. These are equal to one if a measurement is
available and zero if not. Discrete measurements are ap-
proximated by a sharp Gaussian distribution in order to
avoid discrete excitation of the equations and therefore
potentially unstable computations. In the time domain
a corresponding treatment is found not to be necessary.
Thus the variational change of J with respect to the sys-
tem state is defined by

δJ = (p− pexp)σxi
σt︸ ︷︷ ︸

gT

δp. (16)

Again the integrals are omitted.

Potential Source Position and Signal

As acoustic sources can be described by mass, momentum
and energy sources, they can be assimilated by means of
the aforementioned adjoint approach. In general the iter-
ative procedure may be applied to find an optimal excita-
tion leading to a solution matching to the measurements.

However, this is not necessary as the first adjoint solution
contains sufficient information for characterisation of the
source in potential position and signal. By pointwise
summation of the absolute adjoint sensitivities s over all
computed time steps

s =

tn=end∑
t0

‖q∗‖, (17)

the positions of maximum impact to the objective func-
tion are identified. If f0 = is applied, these correspond to
the most likely source positions. Where the summarised
sensitivity remains zero no source is located or at least
cannot be captured by the measurements.

Once a position is identified the source signal can be ob-
tained. The adjoint solution contains the information
how to modify the initial guess f0 = 0. Thus it contains
also the signal in phase, here for the mentioned acoustic
system. If also the amplitude is needed it can be obtained
by application of the iterative framework.

Adjoint Based Observability Analysis

The adjoint equations provide the possibility to assess
measurement configurations by analysis of the observ-
ability Gramian. For a real valued problem it is defined
as

Wo =

∞∫
0

eN
T tCTCeNt dt (18)

in the context of a standard input-output system

q̇ = Nq +Bf (19)

y = Cq

with q as state vector, f as input, y as output, N as
governing model operator and B and C as weightings for
input (forcing) and output (measurement). The Gramian
measures the degree each system state influence the out-
put. A direct computation of the Gramian is not suitable,
but an approximation can be used. The so called empir-
ical Gramian bases on impulse responses of the adjoint
of (19).

Wo =

∞∫
0

q∗i q
∗
i
T dt (20)

This integral can be approximated by means of adjoint
snapshots, see [4] for details.

Wo = Y Y T (21)

Therein Y represents m snapshots of the adjoint system
for k measurement locations

Y = [q∗1(t1) ...q∗1(tm) ...q∗k(t1) ...q∗k(tm)]. (22)
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Figure 2: Exemplary observability modes for a single mi-
crophone in an inflow (from top to bottom). Different flow
speeds Ma=0.0, 1.0, 1.5 (from left to right) are examined.

A modal decomposition of the resulting operator give rise
to the (most) observable states. To reduce the compu-
tational effort a singular value decomposition is used to
obtain the modes. Due to the structure of Wo the singu-
lar vectors correspond to the eigenvectors as

Wo = Y Y T = UΣV V TΣUT = UΣ2UT (23)

holds. The applicability of the linear approach to non-
linear problems is shown in [2].

For sake of clarity the resulting observability modes of
one microphone in a plane inflow are shown, exem-
plary for mode number four. The results base on two-
dimensional simulations of the adjoint Euler equations.
For approximation of the observability Gramian 300 time
steps are used.

For a zero mean flow the resulting modes are circular.
All pressure disturbances are equally observable. No di-
rectivity is found as only a single microphone is used.
In case of a sonic inflow the resulting modes contain no
parts downstream of the measurement. This is plausible
as no acoustic signal created there can reach the micro-
phone. For the supersonic case at Ma=1.5 a Mach cone
like observability is found. The cone is characterised by
an angle of about 42◦ according to a travelling source
with corresponding velocity.

In general the resulting modes can be used to quantify the
observability of certain structures. The projection of it
onto the obtained modes give rise to the most observable
parts. By subsequent subtraction the non-observable
part arise. An according norm of the difference can be
used for quantification of the observability. Thus a frame-
work is available to optimise either measurement config-
urations to be most sensitive with respect to certain sig-
nals or to optimise signals to be most observable for a
given measurement configuration. The application to a
complex flow configuration is shown in [3].

However, this manuscript focuses on the identification of
sound sources and signals. The observability analysis is
not pursued further.

Synthetic Example

To validate the aforementioned adjoint framework a nu-
merical test case is carried out. The mentioned com-
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Figure 3: Sketch of the computational and experimental
validation configuration.

putational domain covers a rectangular domain with an
extent of 0.8 × 0.8 × 0.0875m3 and is discretised with
256 × 256 × 16 points. On all boundaries characteristic
type non-reflecting boundary conditions are used. For
damping of spurious reflections a thin sponge layer region
is applied. The test aims at identification of a harmonic
source by eight surrounding microphones. Source and
microphones are located in a common plane, see Tbl. 1
and Fig. 3 for details.

mic 1 2 3 4 5 6 7 8
x1 [mm] 233 467 632 633 467 233 67 68
x2 [mm] 69 68 233 467 631 637 467 233

Table 1: Microphone positions for the synthetic and the ex-
perimental validation.

In the first step the reference sound field is computed.
Therefore the mentioned Euler equations are excited in
the pressure equation. The harmonic excitation with a
frequency of 5kHz is centered in the domain. Its spatial
distribution corresponds to a Gaussian distribution. The
resulting pressure signals at the microphone positions are
saved.

For the assimilation the reference excitation is disabled
and the Euler equations are solved again forward in time.
As no excitation is present the system state remains un-
changed for all computed time steps. Base on this solu-
tion the adjoint equations are solved backwards in time
excited by the difference between the reference signal and
the actual solution. The excitation is controlled by the
weighting σxi

corresponding to the microphone positions.

The normalised accumulated sensitivities (17) for the
quantity related to pressure p are shown in Fig. 4. A
symmetric result is found. The maximum sensitivity is
centered in the computational domain and corresponds
to the reference source position. Also the shape/monopol
type of the excitation is recovered. Occurring side max-
ima are caused by interference effects and correspond
to alternative source positions. A unique position can
not be identified. For non harmonic signals the solution
might be clearer.

Once the position is identified the signal can be extracted
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Figure 4: Resulting sensitivity field for the synthetic case.
The maximum amplitude is found at the source position.

Figure 5: Frequency analysis of the adjoint signal for the
synthetic and experimental case. For both the reference signal
is recovered.

from the adjoint solution. A frequency analysis of the
adjoint signal p∗ shows, that the harmonic signal is re-
covered, see Fig. 5. However the amplitude of the source
remains unclear. To obtain it the adjoint framework has
to be applied in an iterative manner, what is not dis-
cussed here.

Experimental Validation

To show the applicability of the derived framework also
an experimental validation is carried out. The experi-
ment corresponds to the synthetic case before and is car-
ried out in the anechoic room facility of Technische Uni-
versität Berlin. As source a small speaker mounted on a
rope is used. For the measurements eight pre-polarised
condenser microphones with a sampling rate of 48kHz
are used. The weighting function σt is chosen accord-
ingly. To avoid unwanted reflections, not captured by
the applied model the supporting structure is covered
with acoustic foam.

The resulting sensitivities are shown in Fig. 6. Again the
centre is found to be a potential source location. Also the
analysis of the adjoint signal correspond to the reference
signal of 5kHz.

However, the maximum of the sensitivity occurs near the
microphones 4 and 5. It corresponds to a side maxima
in the synthetic case. A further analysis shows that the
increased sensitivity is caused by the orientation of the
speaker. The speaker is no monopol. Application of the

Figure 6: Resulting sensitivity field for the experimental
case. The maximum amplitude is found near the microphones
4 and 5 due to the orientation of the used speaker.

iterative procedure shows, that mass- and momentum
sources have to be applied to recover the microphone
signals.

Conclusion

A framework for identification of sound sources is pre-
sented. Based on adjoint sensitivities potential source
locations can be obtained as well as the corresponding
signal. The framework allows the identification without
knowledge of the source type. Rather it provides corre-
sponding information. A synthetic and an experimental
validation are carried out showing the applicability. Fur-
thermore an adjoint based method is presented to assess
measurement configurations by means of an adjoint based
approximation of the observability Gramian.
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