
Source directivity in the wave based WRWes simulation

Rob Opdam1, Diemer de Vries1, Michael Vorländer1
1 RWTH Aachen University, 52074 Aachen, Germany, Email: rob.opdam@akustik.rwth-aachen.de

Introduction

In this paper the WRWes algorithm [1, 2] is extended
with the option to include a measured source directivity
in a room acoustic simulation. The idea is to have the
possibility to include measured directivities in a type of
boundary element method simulation. The advantage is
to remove the need of a geometrical model of the sound
source and to simulate for instance the surface velocities
by a structural simulation. In this way only a simula-
tion of the fluid domain is necessary. The source will
be a monopole with a frequency and direction dependent
complex weighting factors mapped on to it to represent
the original directivity of a source. First the WRWes al-
gorithm will be briefly explained and then the extension
of including of measured directivities.

Theory WRWes

The WRWes model is based on the Rayleigh-II Integral,
that states that in every point in the volume V of Figure
1 the complex pressure P can be calculated if the pri-
mary sources are located below or on the boundary plane
S1. The Rayleigh-II integral can be derived from the

'

'

Figure 1: Rayleigh integral equation domain with primary
sources (×), volume V and boundary S = S0 + S1.

Kirchhoff-Helmholtz equation and Green’s second theo-
rem [3] and is formulated in 2-D as:

P (~rA, ω) =
jk

2π

∫
S1

P (~rS1
, ω)H

(2)
1 (k|∆~r|) cos(φ)dS1 (1)

and in 3-D as:

P (~rA, ω) = (2)

1

2π

∫
S1

P (~rS1
, ω)

1 + jk|∆~r|
|∆~r|2

e−jk|∆~r| cos(φ)dS1,

where P is the complex pressure, H
(2)
1 is the the first

order Hankel function of the second kind, |∆~r| = |~rA −
~rS | is the distance from a secondary source point on the
boundary S1 to the reconstruction point A within the
enclosed volume V , φ is the angle between the normal

vector ~n pointing inward to the volume and the vector ~∆r
between a secondary source and the reconstruction point.
The wavenumber k is defined as the angular frequency ω
divided by the propagation velocity c.

The Rayleigh-II integral equation can be written as the
integral over a kernel W (|∆~r|, ω) and the secondary
source pressure P (~rS1

, ω) at the boundary S1:

P (~rA, ω) =

∫
S1

W (|∆~r|, ω)P (~rS1 , ω)dS1, (3)

with as 2-D kernel:

W2-D(|∆~r|, ω) =
jk

2π
H

(2)
1 (k|∆~r|) cos (φ), (4)

and 3-D kernel:

W3-D(|∆~r|, ω) =
1 + jk|∆~r|

4π|∆~r|2
e−jk|∆~r| cos(φ). (5)

In discrete formulation this integral can be evaluated by
a matrix multiplication of a matrix W and a vector ~PS1

:

~P = W ~PS1
(6)

The propagation from one boundary as demonstrated
above is extended to an enclosed geometry. Therefore
the notation of the matrices will be defined as follows:
the lower indices of the matrices indicate the propagation
direction, for example Wds for the propagation from the
source(s) to the detector(s), or the boundary they are
working on, for example Rb1 . The configuration of the
boundaries is unrestricted and does not even have to be
closed, but should be on total convex. The example case
that is used is a rectangular room with four sidewalls
(boundaries b1 to b4), which also encloses the sources
(s1 and s2) and detectors (d1 to d4) as shown in Figure
2. The contribution to the wave field by the reflective

Figure 2: Rectangular room with walls (boundaries), sources
(×) and detectors (◦).

part can be defined as an iterative process, which starts
with propagation from the sources to the walls followed
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by a reflection and propagation to the other walls and
finally reaches the detector points. The calculation of
the reflected wave field is schematically shown in the top
part of Figure 3. The matrix operators that include all

++

Figure 3: Diagram of the model with the total ~P , reflected
~Prefl and direct wave field ~Pdir.

the reflection and propagation properties for the com-
plete geometry are defined as follows. The source vector
~S includes the number of sources and their strength for
the specific frequency ω and is defined as (with the total
number of sources i):

~S =
(
S1(ω) S2(ω) · · · Si(ω)

)T
. (7)

The matrix operator for the propagation from sources
to detectors Wds, sources to the boundaries Wbs and
boundaries to the detector(s) Wdb are defined as (with
the total number of sources, detectors and/or boundaries
indicated as i and j):

Wxy =


Wx1y1 Wx1y2 · · · Wx1yi

Wx2y1 Wx2y2 · · · Wx2yi

...
...

. . .
...

Wxjy1
Wxjy2

· · · Wxjyi

 . (8)

The boundary properties are collected in one matrix R,
where on the diagonal the matrices of separate boundary
properties Rb, as mentioned above, are placed:

R =


Rb1 0 · · · 0

0 Rb2

...
...

. . . 0
0 · · · 0 RbN

 . (9)

Propagation between boundaries is collected in the ma-
trix W, which includes the individual propagations be-
tween the boundary parts (with N the total number of
boundaries):

W =


Wb1b1 Wb1b2 · · · Wb1bN

Wb2b1 Wb2b2

...
...

. . .
...

WbNb1 · · · · · · WbNbN

 . (10)

The matrix W thus consists of N2 submatrices that rep-
resent the propagation between two boundaries. The
matrix components Wbxbx (x ∈ [1..N ]) on the diago-
nal represent the interaction of the boundary with itself.

This can be interpreted as propagating bending waves.
In general cases these matrices will be zero Wbxbx = 0,
while the interaction of the wall with itself can already be
included in the fully occupied R matrix. Furthermore,
it can be easily seen that Wbxby = Wbybx , because of
reciprocity.

The wave field at the detectors in the case of one first-
order reflection at all boundaries is calculated by:

~P1 = [WdbRWbs] ~S, (11)

and if this is extended to the mth-order reflection, Eq.
(11) can be generalized to:

~Pm = [Wdb (RW)
m
RWbs] ~S. (12)

The resulting reflected wave field at the detector loca-
tions ~Prefl is given by the summation of all reflection or-
ders M , which results in the following equation in case
of M =∞:

~Prefl =

M=∞∑
m=0

[Wdb (RW)
m
RWbs] ~S

=
[
Wdb (I−RW)

−1
RWbs

]
~S, (13)

where use is made of the fact that the summation is a
Neumann series, which can be written as a matrix inver-
sion. The matrix I here is the unity matrix. Furthermore,
it is necessary to add the direct wave field ~Pdir from the
source(s) to the detector(s), schematically shown in the

bottom part of Figure 3, to get the total wave field ~P at
the detector(s):

~P = ~Pdir + ~Prefl

=
[
Wds + Wdb (I−RW)

−1
RWbs

]
~S. (14)

Source directivity

The source directivity is captured in the matrix D, where
the elements are weighting factors for the different prop-
agation paths between the source and the boundary Dbs

and the source and receivers Dds. These weighting fac-
tors are frequency and orientation dependent. This direc-
tivity matrix can be included in the WRWes formulation
as follows:

~P = ~Pdir + ~Prefl (15)

=
[
Wds �Dds + Wdb (I−RW)

−1
RWbs �Dbs

]
~S.

Where the symbol � indicates an element wise multipli-
cation between two matrices of the same dimensions.

Results

To test the implementation of the directivity in the WR-
Wes algorithm, a simulation of a real source in a square
room is compared to a simulation of the same room but
with a monopole and the mapped directivity of the origi-
nal source. The square room has the dimensions of 4x4x4
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meters and it has low absorbing walls (reflection factor
of R = 0.97). The source is built-up from 5 monopole
sources with the same source strength, but with differ-
ent positions and zero phases placed in the center of the
room. Their coordinates [xyz] and zero phases φ0 are
listed in Table 1. The coordinates are relative to the
general center point of the source.

Table 1: Coordinates (relative to the common center point
of the monopoles) and zero phases of the 5 monopoles that
form the used source.

Nr.
Position & Phase

x[m] y[m] z[m] φ[rad]

1 -0.085 0 0 0
2 0.085 0 0 π
3 0 0.11 0 π/2
4 0 -0.11 0 3π/2
5 0 0 0.1 π/3

The comparison is done by ”measuring” the directivity of
the original source (5 monopoles) by a simulation in free
field with a spherical receiver array of 65160 receivers,
such that an equidistant distribution of the receivers is
obtained. The angle between receivers is kept constant at
1 degree and the distance of the source center to the re-
ceivers is 1 meter. This ”measured” directivity is used as
input for the simulation with the monopole and mapped
directivity.

The spatial wave fields for both the simulation of both
the original source and the monopole with mapped di-
rectivity are compared at a receiver plane positioned at
3
4 height of the room is given in Figure 4 for the fre-
quency of 200 Hz. The spatial image is build-up from
the responses of 5776 receiver points with a 0.05 meter
spacing.

(a) (b)

(c) (d)

Figure 4: Spatial wave field at 200 Hz for the original source
(a)&(b) and the monopole source with directivity (c)&(d),
with left the magnitude and right the phase.

The frequency and phase responses of both simulations
at receiver number 3000 ([x; y; z] = [0.05;−0.15; 1.00])

from 50 Hz to 2000 Hz in 20 Hz steps is shown in Figure
5.
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Figure 5: Frequency and phase response in 20 Hz steps for
the original source (BEM) and the monopole source with di-
rectivity (WRWes).

Discussion and conclusion

A wave based room acoustic simulation method (WR-
Wes) is presented which is able to use measured directiv-
ities of sources. The advantage is that a coupled simula-
tion (fluid-structure) can be omitted. Any source direc-
tivity can be used for simulations without having a math-
ematical description. The results show that the method
is reliably, but it must be noted that it only works for far
field considerations of the source.
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