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Introduction

In parametric underwater communications (PUC) [1, 2,
3, 4], nonlinear effects occurring during the propagati-
on of intense acoustic waves are exploited for communi-
cation purposes. For this, a high-frequency wave, called
primary wave, is radiated by a transducer. Due to in-
termodulation of this primary wave, among others new
low frequency components are generated. This nonlinear-
ly generated wave is denoted as secondary wave. Using
appropriate modulation techniques [1], the information of
the primary wave can be recovered from the secondary
wave. Besides the reduced channel attenuation at low-
frequencies, the secondary wave features a high relative
bandwidth and a high directivity so that this approach
is promising for communication purposes in long-range
acoustic underwater channels.

Theoretical investigations in order to assess the capabi-
lities of PUC are challenging owing to the underlying
nonlinear acoustics. In particular, investigations of the
secondary directivity of PUC systems are usually done
by means of numerical simulations. The simulations are
convenient and match with real-world measurements fair-
ly well. But this way, only limited physical insights into
the directivity causing processes can be gathered. Ana-
lytical investigations are more suitable for this purpose.
Here, a key problem is in the modelling of the primary
wave propagation in connection with the nonlinear wa-
ve generation. Corresponding analytical approaches im-
ply a volume integration over the virtual source strength
density and closed form solutions suffer from simplifying
assumptions or can only be partially derived.

This paper shows that using a spherical harmonics expan-
sion for the primary wave can simplify the study of the se-
condary directivity. Along with the quasi-linear approach
[5], the virtual volume source is separated in a transver-
sal and a radial dependent component. Then, the volume
integration can be accordingly separated by employing
Green’s function in spherical harmonics. The integrati-
on over the transversal dependent component simplifies
significantly due to the orthogonality of the spherical har-
monics. More importantly, it is not explicitly required to
carry out the integration over the radial dependent com-
ponent for an analysis of the directivity. This enables the
derivation of closed form solutions for elementary prima-
ry sources and an investigation of the directional effects
in parametric arrays.

Using the discussed approach, it is analytically shown for
an arbitrary primary source that the secondary directi-
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Fig. 1: Considered geometry with a primary z-axial dipol
source in the origin.

vity pattern approaches the squared primary directivity
pattern, if the secondary wave is mainly generated in the
primary farfield. If contrarily the secondary wave is gene-
rated in both the primary nearfield and farfield, a broa-
dening of the secondary directivity pattern is observed.
This is in agreement with the literature [2]. As an exam-
ple, the directivity of a primary dipole source is discussed
in the paper.

Physical Modelling

A physical source being located at the origin of a sphe-
rical coordinate system, see Fig. 1, with r denoting the
radial distance, ϑ the polar angle and ϕ the azimuthal
angle of a point r = [r, ϑ, ϕ]T is considered. The physical
source radiates a primary wave, which is denoted by its
sound pressure P p(r, ω) in the spectral domain. Due to
the low conversion efficiency of the nonlinear wave gene-
ration process, it is assumed that only intermodulation
in the primary wave needs to be considered and that
the primary wave propagates mainly in a linear manner.
Following this so-called quasi-linear approach [5], the pri-
mary wave P p(r, ω) satisfies the linear Helmholtz equa-
tion [6]. For simplicity, a two-tone excitation with the
frequencies ω1 and ω2 is considered in this paper. With
k1 and k2 denoting the corresponding wave numbers and
P̃ p(r,k) denoting the complex amplitudes, the primary
wave reads

P p(r, ω) = P̃
∗
p(r,k1)δ(ω + ω1) + P̃ p(r,k1)δ(ω − ω1)

+ P̃
∗
p(r,k2)δ(ω + ω2) + P̃ p(r,k2)δ(ω − ω2) . (1)

Using spherical coordinates and applying a separation of
variables [6], the complex amplitudes P̃ p(r,k) satisfying
the homogeneous Helmholtz equation can be written in
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the form

P̃ p(r,k) = e−αr
∞∑
a=0

a∑
b=−a

Aa,bha(kr)Y ba(ϑ,ϕ) , (2)

where Aa,b are complex coefficients, ha(kr) are the
spherical Hankel functions of first kind for an out-
going wave and Y ba(ϑ,ϕ) are the spherical harmonics [6].
With α denoting an attenuation coefficient, attenuati-
on due to absorption is considered for the primary wave
P̃ p(r,k) in (2).

Nonlinear effects take place at every point r where
the primary waves are intense so that a secondary wa-
ve is radiated by a virtual source volume. At a point
R = [R,Θ,Φ]T, the secondary wave P s(R, ω) satisfies the
inhomogeneous wave equation [6]

k2 P s(R, ω) + ∆P s(R, ω) = Q(ω) , (3)

with Q(ω) denoting the (virtual) source strength den-
sity. It can be shown in the time-domain by means of
a physical modelling [1, 5, 7] that the virtual source
strength density is proportional to the squared primary
wave. Transformed into the frequency domain, the sour-
ce strength density Q(r, ω) at a point r is obtained by
auto-convolving the primary wave P p(r, ω) at r with re-
spect to the frequency ω and a subsequent weighting by
ω2 and a constant β, reading

Q(r, ω) = βk2
(
P p(r, ω) ∗ω P p(r, ω)

)
. (4)

Since only the low frequency components are of interest
for PUC, from the auto-convolution of (4) only the terms
with the difference frequency ωd = ω1−ω2 are considered
in the following. Substituting the primary wave (1) in the
source strength density (4) and considering only terms at
ωd, it follows

Q
d
(r, ω) = βk2d P̃ p(r,k1)P̃

∗
p(r,k2)δ(ω + ωd)

+ βk2d P̃
∗
p(r,k1)P̃ p(r,k2)︸ ︷︷ ︸
Q̃(r,kd)

δ(ω − ωd) , (5)

where Q̃
d
(r, kd) denotes the complex amplitude of the

source strength density for the difference frequency. Next,
a spherical harmonics expansion of the complex amplitu-
de Q̃

d
(r, kd) in (5) is considered. With the complex co-

efficients Bm,n together with the substitution of (2) into
(5), it follows for the complex amplitude

Q̃
d
(r, kd) = e−2αr

∞∑
n=0

n∑
m=−n

Bm,nhn(kdr)Y
m
n (ϑ,ϕ)

!
= βk2de

−2αr
∞∑

a,c=0

a∑
b=−a

c∑
d=−c

A∗a,bAc,dh
∗
a(·)hc(·)Y

b∗
a (·)Y dc(·).

(6)

Since the spherical harmonics Y (ϑ, ϕ) are basis functions,
the corresponding products in (6) can be expressed as
linear combinations of the basis functions, i.e.,

Y b∗a (ϑ,ϕ)Y dc(ϑ,ϕ) =

a+c∑
v=|a−c|

v∑
w=−v

κv,wY
v
w(ϑ,ϕ) , (7)

where the coefficients κv,w can be determined by means
of the Clebsch–Gordan coefficients [8]. Using (7), the co-
efficients Bm,n in (6) can be expressed as

Bm,n = βk2dκn,m

∞∑
a,c=0

a∑
b=−a

c∑
d=−c

(
A∗a,bAc,d

·
∫
e−2αrh∗a(k1r)hc(k2r)h

∗
n(kdr)r

2dr∫
e−2αrhn(kdr)h

∗
n(kdr)r2dr

)
. (8)

Using the equations (6)-(8) and the spherical harmonics
expansion of the Green’s function [6]

G(R,r)=jkd

∞∑
v=0

v∑
w=−v

hv(kdR)Y wv (Θ,Φ)jv(kdr)Y
w∗
v (ϑ,ϕ),

(9)

with jv(kdr) denoting the spherical Bessel functions of
the first kind [8], the solution for the complex amplitude
of the difference frequency can be written as

P̃ s(R, kd) = −
∫
∂V

Q̃
d
(r, kd)G(R, r)dr . (10)

It is worth knowing that the terms of (6) and (9) are se-
parable in radial and transversal dependent components.
Thus, the volume integral in (10) can be separated in a
radial and transversal dependent component, see equati-
on (12). Using the orthogonality property of the spherical
harmonics, i.e.,∫

∂V

Y mn (ϑ,ϕ)Y w∗v (ϑ,ϕ)dA = δnvδmw , (11)

the volume integral of (10) reduces to an one-dimensional
integral with respect to the radial dependent component.

Secondary Directivity

Equation (12) can be employed for analysing the directi-
vity of the secondary wave. For this, the secondary wave
is evaluated at the limit R → ∞, enabling the large ar-
gument approximation of the spherical Hankel functions
[6]

lim
R→∞

h(1)n (kdR) ≈ (−j)n+1 e
jkdR

kdR
(13)

in (12). Considering only the transversal dependent fac-
tor Ds(Θ,Φ) of the result, it follows

Ds(Θ,Φ)=

∞∑
n=0

n∑
m=−n

(
(−j)n+1Bn,mY

m
n (Θ,Φ)

·
∫
r

e−2αrhn(kdr)jn(kdr)r
2dr

)
. (14)

Determining the absolute value of (14) and normalizing
the result yields the directivity pattern of the secondary
wave. This way, the secondary directivity caused by an
arbitrary source strength density can be obtained from
(14) by calculating the coefficients Bn,m resulting from

DAGA 2015 Nürnberg

647



P̃ s(R, kd) = jkd

∞∑
v=0

v∑
w=−v

hv(kdR)Y wv (Θ,Φ)

∞∑
n=0

n∑
m=−n

Bn,m

∫
r

e−2αrhn(kdr)jv(kdr)r
2dr

∫
∂V

Y mn (ϑ,ϕ)Y w∗v (ϑ,ϕ)dA

︸ ︷︷ ︸
δnvδmw

= jkd

∞∑
n=0

n∑
m=−n

Bn,mhn(kdR)Y mn (Θ,Φ)

∫
r

e−2αrhn(kdr)jn(kdr)r
2dr (12)

the coefficients A of the primary wave using (8). Depen-
ding on the scenario, closed form solutions for the integral
of (14) may be found in textbooks, e.g. [8].

An assessment of the secondary directivity pattern wi-
thout explicitly solving the integral can be done, if the
secondary wave is mainly created by the primary farfield.
Since the product kdr becomes large in the primary far-
field, the large argument approximation of the Hankel
function hm(kdr) according to (13) can be substituted
into (14) together with the large argument approximati-
on of the spherical Bessel functions [8]

lim
r→∞

jn(kdr) ≈
1

kdr
sin
(
kdr −

n

2
π
)
. (15)

Then, after some manipulations it follows the transversal
dependence of the secondary wave

Ds(Θ,Φ) ∼
∞∑
n=0

∞∑
m=0

(−j)2n+2Bn,mY
m
n (Θ,Φ)

·

enπ2∫
r

e−2αr dr − e−nπ2
∫
r

e−2αr+j2kdrdr

 . (16)

For low attenuation coefficients α, the first integral in
(16) dominates over the second one so that the latter is
neglected in the following. Then, with

ej
nπ
2 (−j)2n+2 = −(−j)n , (17)

it follows for the transversal dependence

Ds(Θ,Φ) ∼
∞∑
n=0

n∑
m=−n

(−j)nBn,mY
m
n (Θ,Φ) . (18)

The significance of equation (18) is clarified if the vir-
tual source strength density (6) is evaluated at the limit
r→∞. It follows the transversal dependence of the source
strength density

DQ(ϑ,ϕ) ∼
∞∑
n=0

n∑
m=−n

(−j)nBn,mY
m
n (ϑ,ϕ) . (19)

Equations (18) and (19) yield the same transversal de-
pendencies. As a result, the directivity pattern of the
secondary wave approaches the directivity pattern of the
source strength density, if only the primary farfield con-
tributes to the secondary wave.
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Fig. 2: Spherical harmonics: Y 0
0(ϑ,ϕ) (a) and Y 0

2(ϑ,ϕ) (b).

Example: Primary z-Axial Dipole Source

In the following, a z-axial dipole source [6] in the origin
is considered as the primary source, see Fig. 1. The pri-
mary wave being radiated by the dipole has the complex
amplitude

P̃ p(r,k) = A1,0e
−αrh1(kr)Y 0

1(ϑ,ϕ) . (20)

According to (6), the source strength density has the
complex amplitude

Q̃
d
(r, kd) = βk2d e

−2αr ∣∣A1,0

∣∣2 Y 0
1(ϑ,ϕ)2 h∗1(k1r)h1(k2r)

!
=

∞∑
n=0

n∑
m=−n

Bn,me
−2αrhn(kdr)Y

0
n(ϑ,ϕ) .

(21)

Using (7), one obtains for the product Y 0
1(ϑ,ϕ)Y 0

1(ϑ,ϕ)
the coefficients

κn,m =

 1/
√

4π n = 0,m = 0

1/
√

5π n = 2,m = 0
0 else .

(22)

Consequently, only the coefficients B0,0 and B2,0 are non-

zero in (21) and only the spherical harmonics Y 0
0(ϑ,ϕ)

and Y 0
2(ϑ,ϕ), see Fig. 2, contribute to the directivity of

the secondary wave. Having said this, the transversal de-
pendence according to (14) of the secondary wave reads

DD(Θ,Φ)∼B0,0Y
0
0(Θ,Φ)

∫
r

e−2αrh0(kdr)j0(kdr)r
2dr

−B2,0Y
0
2(Θ,Φ)

∫
r

e−2αrh2(kdr)j2(kdr)r
2dr (23)

with the coefficients

Bn,0=βk2dκn,0
∣∣A1,0

∣∣2 ∫ e−2αrh∗1(k1r)h1(k2r)h
∗
n(kdr)r

2dr∫
e−2αrhn(kdr)h

∗
n(kdr)r2dr

.

(24)
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Assuming for the time being that the secondary wave
is mainly generated by the primary farfield, the large-
argument approximations of (13) and (15) can be substi-
tuted into (23) and (24), respectively. It follows

B2,0 ≈ −
2√
5
B0,0 (25)

and a normalization yields the transversal dependence of
the secondary wave

DD(Θ,Φ) ∼ Y 0
0(Θ,Φ) +

2√
5
Y 0

2(Θ,Φ) . (26)

The secondary directivity pattern obtained by equati-
on (26) is depicted by ’ ’ in Fig. 3. Additionally, the
primary directivity pattern of the dipole source and the
squared primary directivity are depicted by ’ ’ and
’ ’, respectively. It can be seen that the directivity
pattern of the secondary wave equals the squared direc-
tivity pattern of the primary wave. Regarding the equa-
tions (20) and (21), the squared directivity pattern of the
primary wave corresponds to the transversal dependence
of the virtual source strength density.

If primary nearfield contributions cannot be neglected,
the integrals of (23) and (24) have to be analysed in
detail. For this purpose, the relations for the spherical
Bessel functions [8]

j2(kdr) = −j0(kdr)− 3
cos(kdr)

k2dr
2

+ 3
sin(kdr)

k3dr
3

, (27)

and for the spherical Hankel functions

h2(kr) = −h0(kr)− 3
ejkdr

k2dr
2
− 3

ejkdr

k3dr
3

(28)

can be used to simplify the calculations. Without sta-
ting the analytical solution in detail, generic seconda-
ry directivity patterns obtained by equation (23) are
shown in Fig. 3 depicted by the grey lines. The parame-
trizations are chosen according to an in air parametric
communication system reported in [7], e.g., α=0,01/m,
k1,2=(760 ± 10) /m and c0 = 330 m/s. To vary the con-
tribution of the primary nearfield, the integration in (23)
and (24) was evaluated for different lower bounds r = r0.
For the upper bound, the limit r →∞ was determined.

With r0=2/kd=10 cm, depicted by ’ ’ in Fig. 3, the
secondary directivity is in a good agreement to the direc-
tivity obtained by using the approximation (26), depicted
by ’ ’ in Fig. 3. Setting r0=1/kd=5 cm, depicted by
’ ’ in Fig. 3, the influence of the primary nearfield
can be mainly seen far-off the acoustical axis. This is fur-
ther illustrated by setting r0=1/2kd=2,5 cm, depicted by
’ ’ in Fig. 3. As a result, a widening of the directivity
pattern is caused by the primary nearfield.

Summary

This paper shows that a spherical harmonic expansion
of both the primary wave and the Green’s function sim-
plifies the study of the nonlinearly generated secondary
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Fig. 3: Directivity analysis of a dipole source: Primary di-
rectivity pattern (’ ’) and squared primary directivity
pattern (’ ’); Secondary directivity pattern (’ ’) ob-
tained by the approximation of (26); Secondary directivi-
ty patterns considering primary nearfield contributions with
r0=2/kd (’ ’), r0=1/kd (’ ’) and r0=1/2kd (’ ’).

wave. This way, closed form solutions can be found by se-
parating the volume integral in a radial and a transversal
dependent component.

As an example, the secondary directivity of a z-axial
dipole source is studied. Considering only primary far-
field contributions, the secondary directivity is determi-
ned without explicitly solving the volume integration. It
is shown that the secondary directivity caused by the pri-
mary farfield approaches the squared directivity of the
primary wave. It is further shown that primary nearfield
contributions result in a broadening of the secondary di-
rectivity pattern.
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