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Introduction

The analysis via synthesis approach has been used to
examine auditory perception. The general idea is to cap-
ture a set of statistics from an input signal at the analysis
stage, and then synthesise a new instance based on those
statistics. If the perceptually relevant statistics are mea-
sured from a biologically inspired auditory model, the
original and the synthetic sounds should be perceptually
similar. Thus, the analysis via synthesis approach pro-
vides a strong test of a perceptual model. [3] have app-
lied such an auditory model to the synthesis of textures
- temporally homogenous sounds, such as rain or birds
chirping. They showed that synthetic textures generated
from a biologically inspired model were preferred over
those generated from non-biological models. This syn-
thesis method is applicable to sound textures, but does
not account for the temporal fluctuations common in ma-
ny environmental sounds. In contrast to this long-term
model, we propose an extension to account for the dyna-
mic and unique features of environmental sounds. This
was achieved by introducing higher temporal resolution
in the modulation domain, yielding the multi-resolution
analysis-synthesis model. The individual contributions of
the various statistics in the spectral domain as well as
the modulation domain were examined. Lastly, the effect
of decoupling the modulation power statistics from the
spectral domain was discussed.

Model

The proposed algorithm consists of an auditory model
serving as front-end, embedded in an analysis-synthesis
framework.

Auditory Model

The auditory model consists of three processing sta-
ges: Frequency selective (peripheral) filtering, envelope
extraction and compression, and finally, the modulati-
on processing as proposed by [1]. The representation of
the signal after the frequency selective filtering, envelope
extraction and compression, is defined here as envelo-
pe domain, while the representation of the signal after
the modulation processing is defined here as modulati-
on domain. The statistics captured in these domains are
defined as envelope statistics and modulation statistics,
respectively. After the envelope extraction, the signal en-
velopes are downsampled from 20 kHz to 400 Hz, yielding
a Nyquist frequency of 200 Hz.

Peripheral Filterbank

The peripheral filtering is implemented as a gammatone
filter bank of order n = 4 with a tuning parameter of

b = 1.0183. A gammatone filter is defined as:

γ[n] = anv−1e−λne2πifcn, (1)

with center frequency fc, amplitude a, and the dam-
ping factor λ = 2πbERB(fc). The equivalent rectangular
bandwidth (ERB) of a human auditory filter was esti-
mated by [2] as ERB(fc) = 24.7 + 0.108fc. The tuning
parameter b sets the bandwidth of the filter in relati-
on to the ERB. The order n = 4 and tuning parameter
b = 1.0183 are derived from a notched-noise masking ex-
periment. The gammatone design is chosen to reflect the
frequency selectivity of the peripheral auditory system.
The output are 34 channels, or sub-bands, with center
frequencies ranging from 50 Hz to ≈ 8 kHz.

Envelope Extraction and compressive Non-
Linearity

[1] showed that the TMTF depends on the carrier wa-
ve form. This is due to the intrinsic modulations of the
carrier. In analogy to the power spectrum model, the in-
trinsic envelope fluctuations of the carrier mask the im-
posed sinusoidal modulation. In this model, the envelope
is extracted by applying the Hilbert transform, given in
equation (2).

SH(t) =
1

π

∫ +∞

−∞

s(τ)

τ − t
dτ (2)

By applying equation (2), one can construct the corre-
sponding analytic signal, given by sa(t) = s(t)− iSH(t).
The Hilbert envelope can then be extracted by taking the
modulus of the analytic signal, according to equation (3).
The modulation spectrum is then the power spectrum of
the Hilbert envelope.

henv(t) = |sa(t)| =
√
s2(t) + S2

H(t) (3)

This leads to a modulation masking pattern, which in
turn leads to the formulation of the modulation filter
bank. By applying this modulation filter bank, one is
able to predict the TMTF for various carriers.

After the envelope extraction a compressive non-linearity
is applied in the form of a static exponential.

Modulation Filterbank

The last stage in the model is the modulation filter bank
as proposed by [1]. It is implemented as a bank of 8 FIR
bandpass filters with Kaiser window and constant relati-
ve bandwidth. The center frequencies are octave spaced
and range from fc = 1.25 Hz to fc = 160 Hz. The modu-
lation bands with their respective center frequencies fc
and window durations L(wn) are listed in table 1. The
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centre frequency of 1.25 Hz and the subsequent octave
spacing were chosen due to the divisibility of the down-
sampled envelope frequency (400Hz) to round numbers.
By applying time windows of different durations, the mo-
del is effectively implementing different time constants
τn.

Tabelle 1: Modulation filter channels
Band 1 2 3 4 5 6 7 8
fc [Hz] 1.25 2.5 5 10 20 40 80 160
L(wn) 320 160 80 40 20 10 5 2
τn [ms] 800 400 200 100 50 25 12.5 5

Analysis-Synthesis Framework

The analysis-synthesis framework, as shown in figure 1,
allows to synthesise new instances of a sound, based on its
statistical properties. In the analysis part, the target si-
gnal is processed by the auditory model described above,
and then a set of statistics are captured at the envelope
and modulation domain, as described below. These sta-
tistics are transferred to the synthesis part, where a ran-
dom noise sample is decomposed based on the same au-
ditory model, and the statistics from the target signal are
imposed. The imposition of the statistics is implemented
as a gradient projection. Since this is an approximative
process, it is iterated until the statistics of the synthetic
signal are sufficiently close to the target signal. This is
estimated by a statistical signal-to-noise ratio (SNR) for
each statistic as defined in equation (4). As convergence
criterion, it has been set, that all relevant statistics have
to have a statistical SNR greater than 30 dB.

SNRstat = 10 log10

∑
k(
∑
n)(

∑
l)X

2
stat∑

k(
∑
n)(

∑
l)(Xstat − Ystat)2

, (4)

with sub-bands k ∈ [1...34], and (in the case of the mo-
dulation statistics) modulation bands n ∈ [1...8], as well
as time windows l ∈ [1...lN ].

Abbildung 1: Analysis-synthesis framework, including the
decomposition of the input signals by a gammatone filter
bank, envelope extraction, a compressive non-linearity and
a modulation filter bank. Input to the analysis section is the
original signal, input to the synthesis section a random noise
sample. Output is a synthetic signal with the closely matched
target statistics.

Statistical Set

In this framework, statistics are captured respectively im-
posed on two levels: the envelope domain and the modu-

lation domain.

Envelope domain

The first four statistical moments at the output of each
of the 34 filters are computed, namely:

1. Mean, M1k = µk =
∑
t w(t)sk(t),

2. Coefficient of Variance, M2k =
σ2
k

µ2
k

=∑
t w(t)(sk(t)−µk)

2

µ2
k

,

3. Skewness, M3k =
∑

t w(t)(sk(t)−µk)
3

δ3k
,

4. Kurtosis, M4k =
∑

t w(t)(sk(t)−µk)
4

δ4k
,

for the kth envelope sub-band sk(t), and the windowing
function w(t), with the constrain that

∑
t w(t) = 1. Note

that each marginal is normalised to its respective filter.
In order to get a dimensionless value, the variance has
been normalised with 1/µ2, thus giving the coefficient of
variance. Note further, that the higher order moments,
skewness and kurtosis, are not imposed in the default
version of the proposed multi-resolution model.

Additionally, across-channel correlations were calculated
as given by equation (5),

Cjk =
∑
t

w(t)(sj(t)− µj)(sk(t)− µk)

δjδk
, j, k ∈ [1...34],

(5)
such that (k − j) ∈ [1, 2, 3, 5, 8, 11, 16, 21].

Modulation domain

The modulation power is computed as:

Mk,n,l =

∑
t wn,lw(t)bk,n(t)2

δ2k
, (6)

with k ∈ [1...34], n ∈ [1...8], l ∈ [1...nw] and wn,l desi-
gnating the lth window in the nth modulation channel
bk,n. The total number of windows nw depends on the
modulation channel and the signal duration. Note, how
the modulation power is normalised with regards to the
global sub-band variance δ2k. Implementations of a local
sub-band variance δ2kwn,l(t) as normalisation factor failed
in producing sufficient synthesis results. In order to cap-
ture only meaningful statistics, the modulation statistics
have been limited to modulation channels with a centre
frequency fc,k,n smaller than a quarter of the sub-band
envelope centre frequency fc,k, fc,k,n < fc,k/4 [1]. This
is reasonable, as it does not make much sense to capture
the 160 Hz modulation of a sub-band channel centred
around 50 Hz.

Method

Two subjective listening experiments were conducted.
Experiment 1 compared the synthesis quality of the pro-
posed multi-resolution framework against that of the ori-
ginal long-term model by [3]. Experiment 2 examined the
influence of the gradual statistics by comparing imple-
mentations of varying complexity of the proposed model.
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Both experiments were conducted as Multi-Stimulus with
Hidden Reference and Anchor (MUSHRA) test [4], where
subjects were seated in a double-walled sound attenuated
booth and presented with different stimuli. These stimuli
they had to rate according to their realism on a scale
from 0 to 100. All subjects were self reported normal
hearing, and between 21 and 33 years old. Both tests
were conducted over 24 different environmental sounds,
comprised of 17 sound textures and 7 non-texture sounds.
The reference condition was always the original sound,
and the low anchor the long-term synthesis based on the
envelope power only.

The conditions for experiment 1 were:

• Original (Reference)

• Multi-Resolution Model

• Long-term Model

• Envelope Power (Low Anchor)

The conditions for experiment 2 were:

• Original (Reference)

• Multi-Resolution Model without correlations

• Multi-Resolution Model

• Multi-Resolution Model incl. skewness and kurtosis

• Envelope Power (Low Anchor)

Results

Experiment 1

Figure 2 shows the results for the test comparing the
proposed multi-resolution model (MR) against the long-
term model (LT) from [3], grouped over all subjects
and sound files. A two-factor repeated measures ana-
lysis of variance (ANOVA) showed that there is a si-
gnificant effect of the condition on the quality rating
(F (1, 8) = 37.054, p < 0.001). Note, that the ANOVA
was performed only over the two synthesis models, ex-
cluding the hidden reference and the low anchor. The
proposed MR model shows a significant improvement of
11.273 points (distance dm between the means) over the
LT model even averaged over all sound files.

Figure 3 shows the results for experiment 1 grouped in-
to sound textures (left) and non texture sounds (right).
When analysed over these subgroups, the two models
show a smaller difference when considering the sound
textures (dm = 7.500, p = 0.016), and a much larger im-
provement of the MR model when considering the non-
texture sounds (dm = 22.593, p < 0.001). This is in line
with the hypothesis, as the LT model was developed for
sound textures, while the MR model was developed to
specifically address non-texture environmental sounds. It
is worth mentioning though, that while the difference is
statistically significant, the data in general exhibit a large
spread.
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Abbildung 2: Results of the experiment on the compari-
son of the multi-resolution and the long-term model, showing
mean and standard deviation over subjects and sound files.
Conditions from left to right: (1) Original sound (hidden refe-
rence), (2) multi-resolution model, (3) long-term model from
[3], (4) envelope power shaped noise (low-anchor)
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Abbildung 3: Results of the experiment on the compari-
son of the multi-resolution and the long-term model, showing
mean and standard deviation over subjects and sound files,
for the subgroups sound textures (left) and non-texture so-
unds (right). Conditions from left to right: (1) Original sound
(hidden reference), (2) multi-resolution model, (3) long-term
model from [3], (4) envelope power shaped noise (low-anchor)

Experiment 2

Figure 4 shows the results of the experiment on gradual
statistics grouped over all subjects and all sound files. A
two-factor repeated measures ANOVA showed that there
is a significant effect of the condition on the quality ra-
ting (F (2, 12) = 17.840, p < 0.001). Again, the ANOVA
was performed only over the synthesis model conditions,
excluding the hidden reference and the low anchor. In
order to examine the differences between the different
models, a post-hoc analysis via a multiple comparison t-
test with Bonferroni correction has been performed. This
showed statistical significance between conditions 2 and 3
(p = 0.011), and conditions 2 and 4 (p = 0.009), but not
between conditions 3 and 4 (p = 0.128). This means, that
omitting correlation statistics lead to minor, but signifi-
cant decrease in synthesis quality. Adding the higher or-
der moments, skewness and kurtosis, on the other hand,
was not found to significantly improve the performance.
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Abbildung 4: Results of the experiment on gradual stati-
stics of the multi-resolution model, showing mean and stan-
dard deviation over subjects and sound files. Conditions from
left to right: (1) Original sound (hidden reference), (2) multi-
resolution model without correlations, (3) multi-resolution
model, (4) multi-resolution model including skewness and kur-
tosis, (5) envelope power shaped noise (low-anchor)

In figure 5, the sound files are grouped into sound textu-
res (left) and non-texture sounds (right). The latter class
was expected to exhibit greater differences between the
conditions, as it is the temporally more complex signal
class. Again, the two-factor repeated measures ANO-
VA showed a significant difference between the models
(F (2, 12) = 12.386, p < 0.001 for the sound textures,
F (2, 12) = 6.468, p < 0.012 for the non-texture sounds).
A post-hoc multiple comparison test with Bonferroni cor-
rection on the sound textures showed a significant diffe-
rence between conditions 2 and 3 (distance between the
means dm = 3.611, p = 0.046), and conditions 2 and 4
(with similar dm = 3.151, p = 0.011), but not between
conditions 3 and 4 (p = 0.237). For the non-texture so-
unds the Bonferroni-corrected multiple comparison test
showed only a significant difference between conditions 2
and 4 (dm = 7.619, p = 0.028), but not between conditi-
ons 2 and 3 (p = 0.209), and conditions 3 and 4 (p = 1).
The quality increase for the included correlations might
be relatively minor, but for some sounds, even if few in
number in this test set, they yield a perceivable diffe-
rence.

Discussion

The multi-resolution model allows to generate synthetic
sounds perceptually similar to their corresponding target
signals. One issue, however, is the decoupling of the mo-
dulation domain statistics from the envelope domain sta-
tistics. A proper decoupling on a local scale could not be
sufficiently implemented, therefore only a global decoup-
ling was implemented. Without this local decoupling, the
modulation domain statistics inform and shape the sub-
band. Due to the increased temporal resolution in the
modulation domain, this brings the proposed model con-
ceptually closer to the noise vocoder by [5]. However, it
seems that a total independence of the statistics is not
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Abbildung 5: Results of the experiment on gradual stati-
stics of the multi-resolution model, showing mean and stan-
dard deviation over subjects and sound files, for the subgroups
sound textures (left) and non-texture sounds (right). Con-
ditions from left to right: (1) Original sound (hidden refe-
rence), (2) multi-resolution model without correlations, (3)
multi-resolution model, (4) multi-resolution model including
skewness and kurtosis, (5) envelope power shaped noise (low-
anchor)

achievable, as was also found by [6].

Conclusion

It could be shown that the multi-resolution processing
scheme improves the perceived synthesis quality, especi-
ally for the temporally complex non-texture sounds. Fur-
ther on, the influence of some of the statistics on the
synthesis quality decreased. These were skewness, kurto-
sis and the across-channel correlations. Omission of the
correlation statistics lead to minor, but significant decre-
ase in synthesis quality. Since adding the higher order
moments, skewness and kurtosis, on the other hand, was
not found to significantly improve the performance, these
were not included in the proposed model.
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