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Introduction

Vibration isolation is a key issue in technical engineering,
ranging from buildings to machines until precision and
micro-mechanics. Just a few examples from an quasi un-
limited number of applications are air conditioning equip-
ment in buildings, engines and wheel suspension in trans-
port, sensitive optical equipment, hard drives and so on.

The linear vibration isolator consists of the classical
mass-spring-damper configuration [1, 2, 3, 4] where the
undesired vibration has to pass from the environment
through the spring-damper component to the suspended
object or vice versa.

The transfer function magnitude of the force transmis-
sion through the suspension component is presented in
figure 1 for three different types of suspensions. The vi-
bration isolation occurs at frequencies above the zero-dB
crossing of the transfer function amplitude. The differ-
ence between the transfer function amplitude and the
0-dB is a measure for the isolation performance.

• undamped spring: The isolation characteristic (ma-
genta line in figure 1) is a −40 dB/decade decline
above the eigenfrequency fn. At the eigenfrequency,
the transfer function magnitude tends to infinity.
Disturbances occurring at the eigenfrequency will
lead to unacceptable amplitudes. This kind of sus-
pension is used for rotating machinery, such as tur-
bines, or for acoustic measurement rooms, where the
suspension resonance will not be excited.

• spring-damper element: The isolation characteris-
tic (red line in figure 1) tends to a −20 dB/decade
decline above the eigenfrequency fn, which is less
performant than the undamped spring. This is
caused by the viscous damper in parallel with the
spring were through the force will be transmitted
in the high frequency range. The transition fre-
quency where the isolation characteristic alters from
−40 dB/decade to −20 dB/decade is ft = 1

2 π
k
c ,

wherein k is the spring constant and c the damper
constant. At eigenfrenquency, the transfer function
magnitude is limited by the damper. These suspen-
sion components are used in applications where ex-
citation at eigenfrequency can occur, such as wheel
suspensions in vehicles.

• hysteresis damping: Hysteresis damping or inter-
nal material damping is dominantly present in elas-
tomeric materials. The damping is expressed as a
complex spring constant in the frequency domain.
The isolation characteristic (blue line in figure 1)

remains a −40 dB/decade decline above the eigen-
frequency fn. At eigenfrequency, the transfer func-
tion magnitude is limited by the imaginary part of
the complex spring constant. Rubber suspension ele-
ments are widely used in engineering. The disadvan-
tages are mainly of technological nature: the elastic
modulus is highly temperature dependent and the
material exhibits considerable creep.

The use of non-linear suspension components is also
widely exploited [3, 4, 5], such as non-linear spring and
damping characteristics, the use of mechanisms to in-
troduce non-linear displacement relations and the use of
different types of dampers, such as dry friction. For ex-
ample, a dry friction damper in parallel with a spring and
a viscous damper has been analyzed [5]. The suspension
component is very effective to damp the vibrations. How-
ever, at small amplitudes, the dry friction damper blocks
and the vibrations are transmitted to the suspended ob-
ject without any attenuation.

In this research, a new type of suspension component
using dry friction has been developed which is able to
combine the −40dB/decade isolation characteristic, con-
siderable damping at resonance and robust against en-
vironmental influences such as temperature, in the six
degrees of freedom.

First, the principle of the suspension component will be
discussed. Then, the functioning of the component will
be analyzed using an unidirectional model and Hamil-
ton’s method is applied to deal with the non-linear ef-
fects. The model parameters such as the spring constants
and the friction will be identified. Then, the model will
be evaluated using a shock excitation and the resulting
response will be discussed. Finally, the model will be
evaluated from data measured on an experimental setup.
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Figure 1: Force transmission characteristic of different vi-
bration isolator principles.
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Principle of the dry friction suspension
component

The principle of the suspension component is presented
in figure 2. It consist of a spring wire bended in a 3-D Ω-

Figure 2: Principle of the dry friction suspension component.

Figure 3: Photograph of the experimental setup with four
dry friction suspension components.

shape. The shape of the wired spring allows some design
freedom to diversify the resonance frequencies in the X-,
Y - and Z-direction. The wire is embedded in the connec-
tion blocks. Due to the displacement of the connection
blocks as a consequence of a shock or vibration, reac-
tion torques appear at the connection interfaces. When
the vibration amplitudes remain small, the spring wire
remains fixed in the connection blocks and the isolator
behaves as an undamped spring. When these torques
overcome the internal dry friction, the connection slips
in the interface and vibration energy is dissipated by the
suspension component.

Figure 3 shows a photograph of the experimental setup.
Four suspension components are located between the
base plate A and the suspended object E. The object has
a mass of 0.97 kg. The Ω-shaped spring wire B is fitted
at the suspended object such it can rotate with dry fric-
tion. The dimensions of the spring wire are R = 12 mm,
a = 20 mm and b = 16 mm. At the base plate side at
position C, the friction of the wire ends can be altered
by electro-magnetic coil actuators D. These actuators
will allow to optimize the damping for different disturb-
ing forces using a semi-active control strategy. By posi-
tioning the four suspension components under 90o, the
damping mechanism is active in all six degrees of free-
dom.

Analysis of the suspension component

To demonstrate the proof of concept, the analysis is car-
ried out in the height direction as a SDOF system. The

Figure 4: One-dimensional model of the dry friction suspen-
sion component.

model, presented in figure 4, consists of the suspended
mass m, the spring k1 connected in series with the dry
friction damper with a slipping force Fs which form the
damper branch and the spring k2 connected in parallel
with the damper branch. As the suspension component
exhibits non-linear behavior, the method of Hamilton [6]
is used to set up the equations of motion. The method
uses a scalar potential function, called the Hamiltonian,
which is the sum of the kinetic and potential energy of
the suspended system, expressed in displacement, mo-
mentum and time as independent variables. Taking the
derivatives of the Hamiltonian to displacement and mo-
mentum results in the set of first order equations of mo-
tion, which can be solved numerically by any ODE-solver.

The kinetic energy Ek and potential energy Ep2 of the
spring k2 are:

Ek = 1
2 m ẋ2 and Ep2 = 1

2 k2 x
2 (1)

The potential energy Ep1 of the spring k1 and the dissi-
pated power Ps in the dry friction damper are dependent
of the position x1 which in turn is dependent of the posi-
tion x of the mass m. In the case that the mass position is
larger than Fs

k1
, the damper is in motion while the spring

length of k1 is constant.

So, the potential energy Ep1 of the spring k1 and the
dissipated power Ps in the dry friction damper are:

Ep1 =
1

2
k1 (

Fs

k1
)2 and Ps = Fs sign(ẋ) ẋ (2)

wherein the sign-function is −1 if ẋ < 0, 0 if ẋ = 0 and
+1 if ẋ > 0.

When the mass displacement becomes sufficiently close
to the equilibrium position such that the force in the
damper branch becomes smaller than Fs, the damper
blocks and the spring k1 moves. In this case, the potential
energy Ep1 of the spring k1 and the dissipated power Ps
in the dry friction damper are:

Ep1 =
1

2
k1 (x−

Fs

k1
)2 and Ps = 0 (3)

Once the displacement is through the equilibrium posi-
tion and becomes larger than −Fs

k1
at the negative side,

the damper is activated again and the spring k1 will be
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again constant in length. So, the potential energy Ep1
of the spring k1 and the dissipated power Ps in the dry
friction damper are:

Ep1 =
1

2
k1 (−

Fs

k1
)2 and Ps = Fs sign(ẋ) ẋ (4)

The transitions between deactivating the damper and ac-
tivation again takes place at the two positions x = Fs

k1
at

the positive side and x = −Fs

k1
at the negative side. This

will be expressed by the two switching functions:

δ1 = δ(x− Fs

k1
) and δ2 = δ(x+ Fs

k1
) (5)

The function δ(y) is 0 if y < 0 and +1 if y ≥ 0.

Combining the expressions (1)-(5) results in the expres-
sions for the kinetic energy, potential energy and dissi-
pated power:

Ek =
1

2
m ẋ2

Ep =
1

2
k2 x

2 +
1

2
k1

[
x (1 − ∆) −

Fs

k1

]2
Ps = Fs sign(ẋ) ẋ∆

(6)

which are valid for each position x of the suspended mass.
The switching function ∆ = δ1 + δ2.

Once the expressions (6) for the kinetic energy, potential
energy and dissipated power are known, the equations
of motion using Hamilton’s method can be set up. The
momentum px will be:

px =
∂ Ek
∂ ẋ

= m ẋ (7)

The Hamiltonian which is the sum of the kinetic and
potential energy, expressed in momentum, displacement
and time will be:

H =
1

2

p2x
m

+
1

2
k2 x

2 +
1

2
k1

[
x (1 − ∆) −

Fs

k1

]2
(8)

The force expression will be:

ṗx = Fl −
∂ Ps
∂ ẋ

− ∂ H

∂ x
= Fl − Fs sign(px) ∆

− k2 x− k1

[
x (1 − ∆) −

Fs

k1

]
(1 − ∆)

(9)

with Fl an external applied force.

Ultimately, the result is a set of two first order differential
equations of motion:


ẋ =

px

m
ṗx= Fl − Fs sign(px) ∆

−k2 x− k1

[
x (1 − ∆) −

Fs

k1

]
(1 − ∆)

(10)

which can be solved by any ODE-solver.

Determination of the spring constants

The spring constants k1 and k2 will be determined from
a FEM-analysis of the suspension construction as pre-
sented in figure 2. The analysis will be carried out for
two cases, one with the wire ends free rotating in the
mounting blocks, the other one with the wire ends fixed.

The first case corresponds to the spring k2 because the
spring k1 does not change its length during the motion.
The second case corresponds to the sum of the spring k1+
k2, as the damper is now blocked and the two springs are
simply in parallel. The resulting deformations of the wire
are presented in figure 5. From these deformations, k2 =

Figure 5: FEM-Analysis of the spring wire of a suspension
component. Left: wire ends free; Right: wire ends fixed.

26.6 kN/m and k1 = 52.2 kN/m. The friction force Fs =
14N is determined from experiments. Using these data in
the equations of motion (10) with an initial displacement
x0 = 0 and an initial velocity of v0 = 1.7 m/s results in
the impulse response presented in figure 6. The most
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Figure 6: Simulated displacement of the suspended mass
excited by an impulse.

interesting phenomena observed in the plot are:

1. In the first 0.2 s of the response, the damper is en-
gaged. The decrease of the displacement magnitude
each half period amounts Fs

k1
. The frequency can be

approximated by f = 1
2 π

√
k2
m . The damping mech-

anism is very efficient.

2. After a transition at 0.2 s, the remaining motion is
an undamped vibration with a maximum amplitude
of Fs

k1
. The frequency is increased compared to the

first part of the motion and is determined by f =
1
2 π

√
k1+k2
m .

3. The equilibrium of the undamped vibration does not
occur at x = 0. The dry friction damper blocks
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somewhere between −Fs

k1
and Fs

k1
, depending on the

initial conditions. In practice, the exact position of
the equilibrium will not be predictable. The total
magnitude, i.e. the equilibrium position with there-
upon superposed the vibration amplitude will never
exceed the interval [−Fs

k1
, Fs

k1
].

Experimental evaluation

The experimental setup, presented in figure 3, has been
realized. The measurements have been carried out using
an impulse hammer and an accelerometer in the center
of the suspended mass. First, the acceleration response
of the mass is recorded in time domain and plotted in
figure 7 in red line, together with the second derivative of
the displacement signal presented in figure 6 in blue line.
The spring constants k1 and k2 have been derived from
the FEM-analysis, the friction force has been estimated
from the experiment and used in the simulation. The
friction force can be adapted on the experimental setup
using the electro-magnetic actuators in a range between
5 N and 54 N.

The measured response exhibits the same behavior as
the predicted one. The acceleration amplitude decreases
quasi linearly until the amplitude becomes to small to en-
gage the friction damper. Then, the vibration amplitude
remains constant. In the experimental setup of course,
this amplitude will become zero after some seconds. The
eigenfrequency of the setup in the undamped situation is
quasi equal to the simulated one. The difference in fre-
quency between simulation and experiment with active
friction damper is due to the assumption that the spring
ends are free which is not fully correct. Nevertheless,
this assumption is sufficient in the design stage of the
suspension component.
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Figure 7: Comparison of the simulated with the measured
acceleration of the suspended mass excited by an impulse.

The measured frequency spectrum, presented in figure 8
(left) in red line, has been averaged over 10 hammer hits.
The simulated spectrum in blue line has been calculated
from the simulated acceleration signal presented in fig-
ure 7. The resonance amplitude is limited to about 10dB,
while the slope of the isolation part of the spectrum re-
mains −40 dB/decade. Also, a measurement of the ac-
celeration of the suspended mass has been carried out
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Figure 8: left: Spectra of the simulated and the measured
displacements corresponding to the time signals presented
in figure 7. right: Spectrum of the acceleration measured
through the suspension compared with a −40dB/decade line.

whereby the base plate is excited by hammer hits. The
spectrum, averaged over 10 hammer hits, is presented
in figure 8(right) and is compared to a −40 dB/decade
line. It demonstrates that the isolation characteristic is
equivalent to the undamped spring.

Conclusion

A new type of suspension component has been devel-
oped. It consist of an Ω-shaped spring wire which ends
can slip in their mountings. By positioning these com-
ponents under 90o around the suspended object, the sus-
pension functions in all six degrees of freedom. A model
of the suspension component has been set up and ana-
lyzed using Hamilton’s equations of motion to deal with
the non-linear phenomena. It is based on a series connec-
tion of a spring with a coulomb damper, which in turn
is connected in parallel with a second spring. An experi-
mental setup has been realized whereupon the suspension
components are validated using hammer impulses. The
observed response is an efficiently damped sinusoidal mo-
tion which turns into an undamped sinusoid with small
amplitude. In the spectrum, the resonance has been lim-
ited in magnitude to 10 dB and the isolation characteris-
tic remains −40 dB/decade equivalent to the undamped
spring.
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