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Introduction

Sound diffraction at noise barriers leads to a decrease of
wanted noise abatement. This effect is more pronounced
in the low frequency range. One possibility to alleviate
this is by modifying the top of the barriers. To calculate
the insertion loss the Boundary Element Method (BEM)
is often used but in most cases only in two dimensions.
This leads to two difficulties. First the source is modeled
as a coherent line source instead of an incoherent point
source. This is far away from reality for the situation
of moving vehicles radiating sound while passing by the
barrier. Secondly the sound arriving to the barrier from
larger angles in reference to the perpendicular case is not
modeled correctly. This may lead to an overestimation
of the noise abatement of the barrier. Here a model will
be presented, consisting of solving the Fresnel integrals
of the Fresnel diffraction theory for an acoustically hard
barrier edge.

ISO 9613-2 and RLS-90

An simplified calculation of the diffraction of an edge is
part of the ISO 9613–2 [1] and given in equation (1).

Dz = 10 · lg
[
3 +

C2

λ
· C3 · z ·Kmet

]
(1)

with

z — indirection in m

λ — wave length in m

C2 = 20 — with ground effect

C3 = 1 — only one diffraction

Kmet ≈ 1 — no meteo–correction

This calculation is simplified in the RLS–90 [2].

Dz = 10 · lg [3 + 80 · z ·Kmet] (2)

In the following the calculations of the Fresnel diffraction
will be compared with this approximation of the RSL–90.

Road Traffic Noise Spectrum

Diffraction is depending on the frequency of the acoustic
wave (see section ISO 9613-2 and RLS–90 ). Considering
this in the calculation of the diffraction with the Fresnel
formulation (see section Fresnel) in principle the road
traffic noise spectrum Road Traffic Noise Spectrum [3] is

used. For simplification an approximation is used for the
acoustic weight aw:

aw (f) = − 4

lg (2)
|lg (f)− 3| (3)

whereby

f = c
λ — frequency in Hz

The velocity of sound propagation c is assumed to be
340 m/s.

Fresnel Diffraction

The Fresnel diffraction occures when a wave emitted from
a point source is reaching a screen with an opening like
an hole, a slit or an infinite edge. The distance of the
receiver point is also finite.

In [4] a complete deduction of the mathematical repre-
sentation is given. The results are shown in the next
chapter.

Theory

The sound pressure derived from Fresnel diffraction is
given by:

up = A · (C + iS) (4)

Here A is the amplitude:

A = − ik
2π
· cos δ · e

ik(R+R0)

RR0
(5)

with

cos δ — cosine of the angle of sight, i.e. the angle be-
tween the line from source to receiver and horizontal
line

R — distance from source to barrier (not to the
edge!) in direct line to the receiver in m

R0 — distance from the barrier (not from the edge!)
to the receiver in m

The integrals C and S are derives from the complex Fres-
nel integrals:

C = a · [re (U) · re (V )− im (U) · im (V )] (6)

DAGA 2015 Nürnberg

249



and

S = a · [im (U) · re (V ) + re (U) · im (V )] (7)

with:

a =
λ

2 ·
(

1
R + 1

R0

)
· cos δ

(8)

The Fresnel integals U and V are given by:

U (w) =

∫ w

0

cos
(π

2
· u2
)
du (9)

and

V (w) =

∫ w

0

sin
(π

2
· u2
)
du (10)

Here w is an auxilary variable:

w = x · cos δ ·

√
2

λ
·
(

1

R
+

1

R0

)
(11)

with

x — vertical distance of the line from the source to
the receiver below the edge in m

For each receiver point a different co-ordinate system is
used. This co-ordinate system must be rotated if source
and receiver are not perpendicular to the edge.

The intensity of the wave (coherently) diffracted at the
edge is:

I = |up|2 =
I0
2
·

{[
U (w) +

1

2

]2
+

[
V (w) +

1

2

]2}
(12)

The reference intensity for the direct wave without edge
is given by:

I0 = 4 · |A|2 · a2 =
1

(R+R0)
2 (13)

Figure 1: Relative intensity of diffraction at an infinite edge

Examples

In Figure 1 the diffraction at an infinite edge is shown.
Here the distances R and R0 are 1 m. The wavelenght λ
is also set to 1 m.

At the edge the relative intensity is 0.25. The relative
intensity is increasing to a maximum value of nearly 1.4
which occures at about 0.6 m above the edge. The wave-
lenght of flucuation around an relative intensity of 1.0
starts with approximately 1 m and is getting shorter
while the amplitude of the oscillation is decreasing from
about 0.4 exponentally towards 0.

In Figure 2 the normalised level of intensity of diffraction
at an infinit edge is shown.

Figure 2: Normalised level of intensity of diffraction at an
infinit edge

The x–direction is along the edge while the y–direction
is perpendicular in the plan of the screen.

Cutting the Edge

Due to the principle of superposition it is possible to cut
the edge into semi-infinite slits and combine them later.
If the total width of the slits

∑
bi is much longer than

the distance from source to receiver R + R0 the result
remains the same when adding the intensities from all
slits.
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There are two reasons for cutting the edge into slits. The
first reason is to be able to calculate partly coherent prop-
agation (see Partly Incoherent Diffraction). The second
reason is to be able to change the geometry of the edge
(see section Changing the Edge). It is also possible to
combine both calculations (see Both Effects). For bet-
ter comparison of the different calculations the normal
diffraction is also conducted with the cutted edge (see
Coherent Diffraction).

Coherent Diffraction

The geometry remains here and for the following calcu-
lations the same. The point source is at the horizontal
distance of 7.5 m to the screen with a height of 5.625 m.
The source point can be seen above the view point of
15 m height, when the horizontal distance of the receiver
point to the screen is 12.5 m.

The normal diffraction of an edge for a road traffic spec-
trum is calulated by energetic summation of the 24th
octave band results from 250 Hz to 4 kHz.

The total coherent intensity of the partial sound pres-
sures up,f,i as a sum over all frequency f and all semi-
infinite slits i is given by:

Icoherent =
∑
f

100.1·aw(f) ·

∣∣∣∣∣∑
i

up,f,i

∣∣∣∣∣
2

(14)

with

aw (f) — acoustic weight of the Road Traffic Noise
Spectrum (see Road Traffic Noise Spectrum).

Figure 3: Coherent Fresnel diffraction and diffraction of
RLS–90

In Figure 3 the coherent Fresnel diffraction and the
diffraction of RLS–90 is shown.

Due to the geometry the edge is at a location of 15 m.
Here the equation (2) is discontitious with a step of about
5 dB. The curve calculated with Fresnel diffraction is
below the curve of RLS–90 for all receiver positions below
the edge.

Partly Incoherent Diffraction

The total partly incoherent intensity of the partial sound
pressures up,f,i as a sum over all frequency f and all
semi-infinite slits i is given by:

Iincoherent =
∑
f

100.1aw(f)

∣∣∣∣∣∑
i

[
(1 + κ) |up,f,i|2 + κu2p,f,i

]∣∣∣∣∣
2

(15)

with

aw (f) — acoustic weight of the Road Traffic Noise
Spectrum (see Road Traffic Noise Spectrum).

κ — coherence coefficient; 1 if coherent and 0 if in-
coherent.

Figure 4: Partly incoherent Fresnel diffraction and diffrac-
tion of RLS–90

In Figure 4 the partly incoherent Fresnel diffraction and
the diffraction of RLS–90 is shown. The coherence co-
efficient is 0.2. This leads to some noise on the Fresnel
diffraction curve.

Changing the Edge

The edge is not modified by moving the semi-infinite slits
up and down alternately (see Figure 5).

Figure 5: Modified edge

The width bi and the the amplitude of modification the
height ai of the semi-infinite slits is choosen as λ and λ

2 .
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Figure 6: Fresnel diffraction of changed edge and diffraction
of RLS–90

In Figure 6 the result of the modifications are shown for
ai = bi = λ (1) and for ai = bi = λ

2 ( 1
2 ) compared to the

unchange case (0) and the diffraction of RLS–90.

In the shadow zone below the edge the diffraction of the
changed edge with ai = bi = λ (1) is less efficient while
the increase above the edge is decreased significantly. For
ai = bi = λ

2 ( 1
2 ) there is no change visible.

Figure 7: Difference in Fresnel diffraction of changed edge
compared to unchanged edge

In Figure 7 the difference in Fresnel diffraction of changed
edge compared to unchanged edge is shown.

The decrease of the level above the edge in the case of
ai = bi = λ (1) is about 1 dB.

Both Effects

The combined effect of partly incoherence and changed
edge is shown in Figure 8.

The noise is much more pronounced for the changed edge
than for the unchanged edge. The cohernence coefficient
is again 0.2. Fortunatly the noise above the edge is less
than below the edge.

Figure 8: Partly coherent Fresnel diffraction of changed edge
and diffraction of RLS–90

Outlook

The insertion loss for a complete pass–by of a vehicle,
modeled as a coherent or partly incoherent point source,
can be calculated with some effort. The problem in cal-
culation of a whole pass–by is to rotate the co-ordinate
system of the Fresnel diffraction model.

The diffraction can be calculated also with Finite Differ-
ence in Time Domain, FDTD. Two and three dimensional
models have been developed and recently tested sucess-
fully (see Figure 9).

Figure 9: Sound pressure at an absorning screen from 3D-
FDTD calculations

The parameter of this calculation where: f = 56 Hz,
dx = dy = dz = 0.1 m, dt ≈ 1/3 ms, T ≈ 10 ms.
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