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Introduction

One key challenge in the numerical simulation of aeroa-
coustic fields is the huge disparity of scales between flow
structures and audible acoustic wavelengths. A volume
discretization, resolving both scales from the generating
vortex to the desired microphone position, not only leads
to a very high number of cells but also to a very small
time step size in order to minimize dissipation of the
acoustic waves. Hybrid schemes in computational aeroa-
coustics (CAA) separate the flow from the acoustic com-
putation by using aeroacoustic analogies. It seems ade-
quate to use different computational grids for computing
each field in an optimal manner. As a result, a factor
of 100 between the cell edge lengths of flow and acous-
tic grids is not uncommon in low Mach number flows.
The fundamental requirement is an accurate data trans-
fer from one grid to the other with minimal interpolation
errors. To cope with this task, different strategies can
be applied, starting from low complexity nearest neigh-
bour interpolation to complex volume intersections be-
tween flow and acoustic grid. Within our contribution
we will investigate two approaches. The first one is a
conservative interpolation strategy which features a low
computational complexity but can lead to errors if cer-
tain conditions for CFD and acoustic grids do not meet
certain conditions. The second scheme can be seen as an
extension an copes with situations in which the flow grid
has a cell size in the same range or bigger than the acous-
tic grid. Both schemes are investigated for two different
aeroacoustic analogies.

Acoustic Analogies

The fundamental requirement for a hybrid aeroacoustic
scheme is a valid aeroacoustic analogy for the given setup.
The most famous one is Lighill’s analogy which can be
written for incompressible flows as
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∂2p′

∂t2
−∆p′ = −∆pic . (1)

Here, we denote the perturbation pressure by p′ and the
speed of sound by c. It has to be noted, that p′ can
only be taken as an acoustic pressure pa in regions where
∆pic = 0. In contrast to this, in low Mach number ap-
plications it is possible to split p′ additively into its in-
compressible and compressible components (see e.g. [2])
as p′ = pic +pa and apply this ansatz to (1), which yields
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. (2)

Here, we can obtain directly the acoustic pressure pa

by taking the second time derivative of the incompress-
ible flow pressure pic. Also other formulations including
mean flow effects are possible and utilized for different
applications (see e.g. [4, 3] and references therein). In
most cases, taking a time or spatial derivative of the in-
compressible flow pressure pic remains the same in many
analogies suited for incompressible flows. Obviously, the
spatial properties of the source term field for the wave
equation is of great importance for a grid interpolation
algorithm. If the aeroacoustic wave propagation is com-
puted using a finite element scheme, the conservative in-
terpolation given in [1] can be utilized. Taking the vari-
ational form of the inhomogeneous wave equation as∫

Ω

ϕ
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dΩ +

∫
Ω

∇ϕ · ∇p dΩ =

∫
Ω

ϕ Q dΩ . (3)

in which ϕ denotes a test function and Q can be replaced
by one of the proposed source terms in (1) or (2). Ana-
lyzing the right hand side integrals in (3), the conserva-
tive interpolation procedure is based on the assumption,
that the right hand side has to be equal on the flow and
acoustic grid. Thereby it is possible to write the domain
integral over Ω as the sum over element integrals as∫

Ω

ϕ Q dΩ =

NCFD∑
i=1

∫
Ωi

ϕ Q dΩ =

NCAA∑
i=1

∫
Ωi

ϕ Q dΩ . (4)

On this assumption, we can formulate the following al-
gorithm

1. Compute element integrals on CFD grid according
to the finite element method.

2. Search for each node in the CFD grid the containing
element in the acoustic grid.

3. Compute weighted sum of all CFD nodes according
to containing acoustic element.

By this procedure, we can store interpolation weights in
a sparse matrix which is simply multiplied with the CFD
solution vector in each time step to obtain the updated
right hand side. As a result, the most time consuming
part during the update of the right hand side is reading
the new solution vector from the CFD.

With this algorithm, different discretization for both
fields as shown e.g. in Fig. 1 can successfully be handled.
In fact, this procedure can be seen as an integration of
the source term field on each acoustic element. Thereby,
it becomes also apparent, that it is required that at least
one CFD node is contained in each acoustic element. If
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Figure 1: Typical situation of different discretization for
aeroacoustics. CFD grid (blue), acoustic element (red) and
contours of the source term field.

this is not the case, the interpolation error is increased
significantly as we will show later.

One Dimensional Channel

For our first investigation we choose a (pseudo) one di-
mensional setup as depicted in Fig. 2. On both ends of

Figure 2: Thin channel setup with absorbing boundary con-
ditions.

the channel we apply absorbing boundary conditions to
avoid reflections. To excite the domain an exponential
source distribution is chosen which is modulated with a
sine function of given frequency

pic = e−D1x
2

sin(ω1t) +
1

10
e−D2(x0−x)2 sin(ω2t) , (5)

For the computations we choose ω2 = 2ω1 and D2 = 2D1

and set the origin x = 0 to the center of the channel. Due
to the homogeneous Neumann boundary condition on the
top and bottom of the channel, only plain waves can
propagate. Furthermore, for the reference computations,
we choose a very fine discretization h = href and monitor
the acoustic signals at the end of the channel.

According to the investigated aeroacoustic formulations
we need to evaluate the Laplacian or the second time
derivative of the incompressible flow pressure pic. The
second time derivative source field shows the expected ex-
ponential distribution as indicated in Fig. 3. The source
field based on the Laplacian, on the other hand, shows
a more complex distribution as shown in Fig. 4. It has
to be mentioned, that this situation might even become
more significant when computing in two or three space
dimensions.

We investigate different levels of coarsening in the range
of h = [10href . . . 800href ]. For the coarsest discretiza-
tion, the generated acoustic waves are still resolved by
ten elements per smallest wavelength. By comparing the

Figure 3: Instantaneous source field distribution inside the

channel for Q(x) = − ∂2pic
∂t2

.

Figure 4: Instantaneous source field distribution inside the
channel for Q(x) = −∆pic(x).

monitored acoustic signals and comparing them to the
reference solution we can deduce the quality of interpo-
lation for this one dimensional example.

When using the 2nd time derivative of the flow pressure
(see (2) ), the simpler spatial field distribution allows a
high level of grid coarsening inside the domain as visible
in Fig. 5. All investigated mesh sizes allow the acoustic

Figure 5: Results for time derivative.

signal to be transported with only minor differences to
the reference signal.

The situation becomes more complicated when turning to
the 2nd spatial derivative of the incompressible flow pres-
sure (see (1) ) . As indicated in Fig. 6, the acoustic wave
is no longer captured correctly for h > 400href . Although
this seems like a high level of coarsening, we have to note,
that the situation will become more complicated in case
of real flow data. Especially if the computations of spa-
tial and time derivative show numerical errors, the source
term fields can get very noisy and diffracted.
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Figure 6: Results for spatial derivative.

From the one dimensional example, we can conclude that
the interpolation procedure is very well suited for both
formulations of acoustic source terms although the re-
quirements on the acoustic grid are higher in the case of
spatial derivatives.

Coarsening the CFD Grid

In the preceding section, we always assume that
hCFD << hCAA. Although this assumption is, in most
cases, very well fulfilled inside the source region it may be
violated closer to the outflow boundary where the CFD
grid is chosen very coarse in many cases and aeroacoustic
sources are assumed to be of minor significance, close or
equal to zero. Thereby, the interpolation error may also
be of minor significance.

When computing with time derivative based source terms
another effect may become important in this context.
As the fluid pressure can only be determined up to a
constant, when solving the incompressible Navier Stokes
equations, its time derivative may lead to unphysical
source term distributions. Although this effect is, in most
cases, small in comparison to the significant sources, nu-
merical errors in the CFD solution may lead to an ampli-
fication and thereby to an unphysical wave propagation.
This situation is depicted in Fig. 7, showing the interpo-
lation result of the second time derivative of the incom-
pressible flow pressure pic as source term for a rotating
setup in which two small cylinders rotate around a com-
mon axis in the center of the domain. Clearly visible are
interpolation artifacts near the outflow boundary, which
falsify the propagation computation.

In those cases we propose a sightly more complicated in-
terpolation procedure, based on computing intersections
of volume cells which is (with modifications) also used for
data transfer between different CFD grids in finite vol-
ume codes such as OpenFOAM. The basic procedure is
depicted in Fig. 8 and works on the assumption that the
aeroacoustic source term is constant over the fluid cell.
After we determine two cells as intersections candidates
we compute the center and the volume of the intersec-
tion polyhedron. With this information it is possible to
add the source contribution weighted with the intersec-
tion volume to the nodes of the acoustic element using
the acoustic elements FE shape functions evaluated at

Figure 7: Artifacts due to interpolation in regions where
hCFD ≥ hCAA.

Figure 8: Steps for interpolation based on cut-volume-cell
approach.

the center of the polyhedron, Sh(Xc). For an acoustic
node i this reads as

Si = Si + VcShi(Xc)Q(Xc) . (6)

Thereby we can also cover cases in which one or multi-
ple acoustic elements are embedded into a single CFD
cell. By utilizing this approach, the source term field
depicted in Fig. 9 could be obtained. The color scaling
corresponds to the one in Fig. 7 and we observe a smooth
source term distribution indicating the reduction of the
interpolation error. It is worth noting that this algorithm
can be implemented with a high level of parallelism which
allows to intersect also large computational grids in three
space dimensions. First computations for a 32 million cell
CFD grid and a 1.5 million element CAA grid resulted
in a total number of 430 million cell intersection oper-
ations. Using a shared memory parallel implementation
all interpolation weights were computed in 2.5 hours on a
workstation with 12 threads. The standard interpolation
procedure in this case took only about 15 minutes.
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Figure 9: Source term field based on cut-volume-cell ap-
proach.

Conclusion

Within our contribution we could underline the capabil-
ities of coarsening the acoustic grid in comparison to the
flow grid. The approach utilized so far, allows the acous-
tic grid to be defined much coarser than the CFD grid as
long as all relevant acoustic waves are captured. Also we
could show that the utilization of the 2nd spatial deriva-
tive of the flow pressure pic as source term require much
finer acoustic grids due to a more complex source field
distribution. As a rule of thumb, the one dimensional
computations indicate that the smallest relevant vortex
needs to be resolved with two acoustic cells whereas the
2nd time derivative of the flow pressure as source term
allows at least a two times coarser grid. Finally, we could
demonstrate how it is possible to avoid interpolation ar-
tifacts by utilizing a cut-cell-volume approach in regions
where the CFD mesh is coarser than the acoustic grid.
Furthermore, a combination of both approaches is feasi-
ble and might help to decrease the overall computational
effort.
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