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Abstract

We evaluate a real-time multi-channel dereverbera-
tion method for the application to speech recognition
with deep neural networks (DNN). The dereverberation
method is based on modeling the reverberated signal as a
mixture of a fully coherent direct path signal and a diffuse
reverberation component, and estimating the coherent-
to-diffuse power ratio (CDR) from the spatial coherence
of the signals. The method can operate in real-time, i.e.,
without requiring processing of entire utterances. We
compare CDR estimators which are “blind”, i.e., do not
require information about the direction of arrival (DOA)
of the target signal, with estimators which make use of
a DOA estimate. The impact of the dereverberation
method on speech recognition accuracy with different
DNN-based acoustic models is investigated with the RE-
VERB challenge corpus and the Kaldi speech recognition
toolkit.

Introduction

Most dereverberation methods require the collection of a
considerable amount of data for the estimation of param-
eters before effective signal enhancement is possible. For
example, approaches based on temporal decay models
[1] require the estimation of the decay rate, approaches
based on linear prediction require adaptation of the pre-
diction filter [2], and methods based on channel inver-
sion require estimates of the impulse responses from the
source to the microphones [3]. In typical mobile speech
recognition applications, voice is transmitted to a server
to perform speech recognition. Due to the limited capac-
ity of the transmission channel, and the desire to provide
feedback while the user is still talking, transmission of
voice should start as early as possible, without having
to wait for several seconds or until the end of an utter-
ance to perform signal processing. This requires a front-
end which can operate with a low delay and does not
require long-term estimation of signal or environmental
characteristics. One such processing method is postfil-
tering based on the assumption of an uncorrelated [4, 5]
or diffuse [6, 7] reverberation component.

In this paper, we evaluate the effect of coherence-based
dereverberation on automatic speech recognition (ASR)
with Deep Neural Networks (DNNs). First, we review
the signal model and the concept of signal enhancement
based on an estimate of the coherent-to-diffuse power ra-
tio (CDR), of which a detailed description can be found
in [7]. Then, we describe the direction of arrival (DOA)-
independent and DOA-dependent CDR estimators which
are used for the evaluation in this paper, as well as meth-

ods for DOA estimation. We describe the evaluated hy-
brid DNN-HMM ASR system, and compare the impact
of dereverberation using the different CDR estimators on
ASR word error rate (WER).

Signal Model

We consider a reverberated and noisy speech signal
recorded by two omnidirectional microphones. The
signal xi(t) recorded at the i-th microphone is com-
posed of the coherent desired signal component si(t)
and the diffuse undesired component ni(t) compris-
ing additive noise and late reverberation, i.e., xi(t) =
si(t) + ni(t), i = 1, 2. The microphone, desired, and
noise signals are represented in the short-time Fourier
transform (STFT) domain by the corresponding upper-
case letters, i.e., Xi(k, f), Si(k, f) and Ni(k, f), respec-
tively, with the discrete frame index k and continu-
ous frequency f , and the auto- and cross-power spec-
tra Φxixj

(k, f), Φsisj (k, f), Φninj
(k, f). Note that the

continuous frequency f is used here for generality; in
practice, f denotes discrete values along the frequency
axis. It is assumed that the auto-power spectra of all sig-
nal components are identical at both microphones, i.e.,
Φsisi(k, f) = Φs(k, f),Φnini

(k, f) = Φn(k, f). The time-
and frequency-dependent CDR can then be defined as

CDR(k, f) =
Φs(k, f)

Φn(k, f)
. (1)

The complex spatial coherence functions of the desired
signal and noise components are given by

Γs(f) =
Φs1s2(k, f)

Φs(k, f)
, Γn(f) =

Φn1n2
(k, f)

Φn(k, f)
, (2)

and are assumed to be time-invariant, i.e., dependent
only on the spatial characteristics of the signal com-
ponents. It is furthermore assumed that signal and
noise components are orthogonal, such that Φx(k, f) =
Φs(k, f)+Φn(k, f). The complex spatial coherence of the
mixed sound field can then be written as a function of
the CDR and the signal and noise coherence functions:

Γx(k, f) =
CDR(k, f)Γs(f) + Γn(f)

CDR(k, f) + 1
. (3)

The direct sound is now modeled as a coherent plane
wave with a time difference of arrival ∆t, while the un-
desired noise and late reverberation component is mod-
eled as a diffuse (spherically isotropic) sound field. The
corresponding spatial coherence functions for the direct
and diffuse sound components are given by

Γs(f) = ej2πf∆t, (4)

Γn(f) = Γdiffuse(f) = sinc(2πfdc−1), (5)
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Figure 1: CDR-based dereverberation system [7] applied to logmelspec feature extraction

respectively, where c is the speed of sound. The direct
signal coherence has a magnitude of one with a phase de-
termined by the time difference of arrival (TDOA), while
the diffuse noise coherence only depends on the known
microphone spacing d.

For spectral enhancement it is desired to estimate the
CDR from the short-time coherence of the mixed sound
field Γx(k, f). This coherence is first estimated as

Γ̂x(k, f) =
Φ̂x1x2

(k, f)√
Φ̂x1x1

(k, f)Φ̂x2x2
(k, f)

, (6)

where the spectral estimates Φ̂xixj
(k, f) are obtained by

recursive averaging as follows:

Φ̂xixj (k, f) = λΦ̂xixj (k−1, f) + (1−λ)Xi(k, f)X∗
j (k, f),

(7)
with a constant smoothing factor λ between 0 and 1,
chosen such that the time constant of the estimate is
on the order of the stationarity interval of speech (�
100 ms).

Coherence-based Spectral Enhancement

The STFT-domain spectral enhancement system evalu-
ated in this paper is shown in Figure 1; a detailed descrip-
tion can be found in [7]. First, the squared magnitude
spectra of both microphone signals are averaged, before
the postfilter is applied to suppress diffuse signal com-
ponents. The postfilter gain G(k, f) is computed from
an estimate of the CDR, which is obtained from an esti-
mate of the spatial coherence Γ̂x(k, f). The CDR can be
estimated either with a “blind”, i.e., DOA-independent
estimator, which requires only the diffuse noise coherence
model, or with a DOA-dependent estimator which addi-
tionally requires an estimate of the DOA or the target
signal coherence Γ̂s(k, f). The enhanced STFT-domain
output spectrum after the postfilter is then transformed
into logmelspec features using NMel Mel-spaced triangu-
lar weighting filters.

Blind (DOA-independent) CDR Estimation

In [7, 8] it is shown that knowledge or explicit estima-
tion of the DOA is not required for the CDR estima-
tion, since (3) can be solved for the CDR without re-
quiring knowledge of Γs(f). The corresponding blind
(DOA-independent) estimator equation is given by [8,

ĈDRprop3]. Using this estimator, the proposed feature
extraction system allows real-time operation, requiring
only the quasi-instantaneous estimation of the short-time
spectra according to (7).

DOA-dependent CDR Estimation

Several different DOA-dependent CDR estimators have
been proposed [7], based on earlier optimum postfilter
derivations for diffuse noise [6]. While they behave iden-
tically under ideal conditions, assuming the target DOA
is exactly known, postfilters based on these estimators do
not only suppress diffuse components, but also have an
additional directional filtering effect. Also, they are more
tolerant towards the estimation variance of the short-
time coherence and deviation of the noise/reverberation
coherence from the ideal diffuse model. For these reasons,
they generally lead to stronger suppression of diffuse
noise and better practical performance than the blind
estimator [7]; on the other hand, they require the esti-
mation of the target DOA.

The best-performing DOA-dependent estimator
ĈDRprop2 proposed in [7] is evaluated in this pa-
per. We do not explicitly estimate a DOA, but estimate
the direct signal coherence Γ̂s(k, f) from the noisy
speech signal by:

Γ̂s(k, f) = exp{j arg Γ̄x(k, f)}, (8)

where Γ̄x(k, f) signifies a long-term estimate of the coher-
ence between the microphone signals, in contrast to the
short-time coherence estimate Γ̂x(k, f). This long-term
estimate is obtained analogously to (6) either from spec-
tra which are averaged over an entire utterance, or, for
real-time implementation, spectra which are recursively
averaged as in (7), but using a higher smoothing factor.

ASR Engine

We employ the Kaldi toolkit [9] as ASR back-end sys-
tem, configured in the same way as described in [10]. The
WSJ0 trigram 5k language model of the REVERB chal-
lenge is used, and an acoustic model with 3551 context-
dependent triphone states. We set up a GMM-HMM
baseline system (see [11, 12] for a detailed description)
trained on the clean WSJCAM0 Cambridge Read News
REVERB corpus [13]. The alignment of the training data
to the HMM states is then extracted from the clean train-
ing data and used for the later multi-condition training
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Table 1: ASR Word Error Rate for the REVERB challenge evaluation and development test sets.

SimData RealData

near far near far near far near far
none 7.91 14.30 32.53 79.75 44.90 87.15 44.42 85.79 85.52 85.66 46.27 85.13

DOA-independent 7.86 17.74 16.25 47.50 24.74 67.55 30.27 72.31 66.27 69.29 31.70 65.25
DOA-dep., utterance 8.32 18.21 15.69 43.63 23.18 66.19 29.20 71.12 66.58 68.85 30.49 64.34
DOA-dep., realtime 8.55 17.70 15.74 43.74 23.11 65.85 29.12 71.57 65.94 68.76 30.30 64.83

none 5.74 6.67 7.65 13.92 8.65 14.62 9.54 28.45 29.14 28.80 9.68 24.93
DOA-independent 6.61 7.12 7.65 12.18 8.32 14.57 9.41 28.46 29.07 28.77 9.13 25.29

DOA-dep., utterance 6.98 7.33 7.10 11.66 8.13 14.30 9.25 27.98 27.68 27.83 9.36 24.13
DOA-dep., realtime 6.79 7.53 7.16 11.82 8.04 14.23 9.26 29.03 29.25 29.14 9.51 25.08

Acoustic 
Model Enhancement

multi-
condition

Room 1 Room 2

clean

AvgAvg

Evaluation Set Development Set
SimData RealData

Avg Avg
Room 3 Room 1

of a hybrid DNN-HMM system. The DNN is a maxout
network [14] with 2-norm nonlinearities/activation func-
tions and 4 hidden layers, each with an input dimension
of 2000 and an output dimension of 400.

We use features consisting of NMel = 24 static logmel-
spec coefficients, generated with or without applying
coherence-based spectral subtraction in the STFT do-
main as described in the previous sections. Also, Delta
(∆) and acceleration (∆∆) coefficients are appended, and
mean and variance normalization and ±5 frame splicing
is applied to the entire resulting feature vector. Note
that, although the features are computed in real-time,
the mean and variance normalization is performed per
utterance here; for real-time decoding before the entire
utterance is available, this would need to be modified.

The training is performed on the REVERB multi-
condition training set [15], consisting of 7861 noisy and
reverberated utterances from the WSJCAM0 corpus, us-
ing greedy layer-wise supervised training, preconditioned
stochastic gradient descent, “mixing up” [14] as well as
final model combination [14]. The multi-condition data
is processed by the proposed spectral enhancement be-
fore training. For comparison, we also train an acoustic
model only on clean speech without noise and reverber-
ation.

Evaluation

We evaluate the proposed system on the two-channel task
of the REVERB challenge [15]. The REVERB evaluation
test set consists of ∼5000 reverberant and noisy utter-
ances, partially created by convolution of clean WSJ-
CAM0 utterances with impulse responses and mixing
with recorded noise sequences (“SimData”), and par-
tially consisting of multichannel recordings of speakers
in a reverberant and noisy room from the MC-WSJ-AV
corpus (“RealData”). For SimData, the reverberation
times of the three rooms are approx. 0.25 s, 0.5 s and
0.7 s and the source-microphone spacing is 0.5 m (near)
or 2 m (far). For RealData, the reverberation time is
approx 0.7 s and the source-microphone distance is 1 m
(near) or 2.5 m (far). In both cases, an 8-channel circu-
lar microphone array with a diameter of 20 cm was used,
of which two microphones with a spacing of d = 8 cm
are selected for the two-channel recognition task which is
evaluated here. STFT frame length is 25 ms with 10 ms

shift, the smoothing factor for the coherence estimation
is λ = 0.68.

Figure 2 shows the logmelspec features generated from
the noisy and reverberant, enhanced (DOA-independent,
DOA-dependent with utterance-based direct signal co-
herence estimation or real-time estimation by recursive
averaging) and clean signals of an utterance from the
REVERB corpus. It is noticeable that the spectral en-
hancement achieves a significant reduction of both re-
verberation and background noise. A notable difference
between the DOA-dependent and -independent enhance-
ment methods is that the noise floor is suppressed to a
higher degree for the DOA-dependent enhancement, oth-
erwise the visual difference is not significant.

Results for the WER are given in Table 1. We compare
results for logmelspec features with no spectral enhance-
ment (corresponding to the presented scheme with a con-
stant gain G(k, f) = 1), and spectral enhancement using
the DOA-independent or DOA-dependent estimator, the
latter either using utterance-based or real-time estima-
tion of the direct signal coherence. Results are given
both for the clean-speech acoustic model and for the
multi-condition-trained acoustic model, where for multi-
condition training, the signals are preprocessed by the
same spectral enhancement method as used for the re-
spective evaluation.

For the clean-speech acoustic model, all variants of the
proposed signal enhancement method lead to a signif-
icant WER reduction; an exception is Room 1, which
has a very low amount of reverberation, and where the
benefit of suppressed reverberation is consequently out-
weighed by the inevitable distortion introduced by the
spectral subtraction. Also, the DOA-dependent esti-
mators have a small but consistent advantage over the
DOA-independent estimator, which is in line with earlier
results for a small-vocabulary HMM-GMM-based ASR
system trained on clean speech [7].

For the multi-condition acoustic model, the overall WER
is dramatically reduced w.r.t. the clean speech model,
however the improvement by spectral enhancement is
marginal. Apparently the temporal characteristics of
reverberation can be exploited by the DNN very effec-
tively, and while the spectral enhancement uses addi-
tional spatial information which is not available to the
DNN, the use of this information by applying spectral
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Figure 2: Features for the utterance “The statute allows for
a great deal of latitude”.

subtraction, along with the distortion it introduces, is ap-
parently not beneficial. In [10], an alternative approach
is described, where, instead of using spatial information
to perform spectral enhancement, coherence-based mel-
diffuseness features features are extracted and appended
to the noisy logmelspec feature vector (replacing the ∆∆
coefficients of the logmelspec features). This approach
was found to lead to a significant WER reduction.

Conclusion

We described a spectral enhancement system which
works in real-time using instantaneous spatial coherence
estimates. The system was shown to have a signifi-
cant effect on recognition performance with a DNN-based
acoustic model trained on clean speech, as similarly ob-
served for a GMM-HMM-based recognizer and MFCC
features in [7]. However, for a DNN acoustic model
trained on multi-condition reverberated and noisy data,
the advantage of the spectral enhancement was found to
become insignificant. In [10], it is shown that, although
the use of spatial coherence-based spectral subtraction
does not lead to significant improvement, the same signal
model can be used to extract coherence-based meldiffuse-
ness features, which, when used as feature for the DNN,
can significantly improve recognition performance.
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