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Introduction

Active sonar systems for target detection and tracking
have been intensely studied over the past decades and fo-
cused the attention of many researchers worldwide. The
basic principle of an active sonar system thereby never
changed: emitting a sound pulse (ping) and listening for
the echos to gather information of the underwater en-
vironment [1]. This simple principle is, however, chal-
lenging due to limited bandwidth, extended multi-path,
refractive properties of the medium, severe fading, rapid
time-variation of the channel, and large Doppler shifts [2].

There are numerous parameters which need to be con-
sidered to gain optimal sonar-system performance. In
addition, the optimal configuration of these parameters
is highly depending on the application of choice (e. g.,
either diver detection or anti-submarine warfare). This
requires on the one hand, the use of an optimal hardware
for transmitting the pulse and receiving the echo and, on
the other hand, a signal processing that leads to a ro-
bust target detection. In this contribution a so called
“cognitive-”sonar signal processing is proposed that is
able to work in real-time. Additionally, first results of
the system’s behaviour within a simulated environment
are shown.

Main principle

In traditional active sonar systems, the sonar designers
take little account of the influence of the environmental
information and prior knowledge perceived by a sonar re-
ceiver [3]. The behavior of the sonar system is kind of
stiff. This is not optimal, considering the complicated
transmission characteristics of a fast changing underwa-
ter channel. Here applies the idea of cognitive sonar.
According to the Oxford English Dictionary, cognition
is “knowing, perceiving, or conceiving as an act”. This
quotation illustrates the capabilities of a cognitive sonar
system by focussing on three main points:

• knowing: sensing the underwater environment,

• perceiving: process the data, extract information
and learn through interactions of the sonar with the
environment,

• conceiving: optimize the transmit signal for target
detection based on the gained information, through
feedback from the receiver to the transmitter.

In this paper, we follow one simple principle, illustrated
in Fig. 1: The traditional signal processing A on the
left side produces an output for a tracking module which
gives the result 1. On the right side, we consider a sig-
nal processing B which is optimally tailored to individual
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Figure 1: Main principle of the target detection of a tradi-
tional sonar signal processing (left) compared to the cogni-
tive approach (right) followed in this paper. The result 2 is
at least equal or better than result 1, e. g., in terms of track
probability of detection or track false-alarm rate [4].

target and specific environmental properties. It is obvi-
ous that the output of signal processing B produces, after
the tracking block, the result 2 being equal or better than
result 1, e. g., in terms of track probability of detection
or track false-alarm rate [4], since it makes use of extra
information. So the main idea is to add a certain intelli-
gence to a sonar system. However, the challenging part
of this approach consists of four main points:

1. The optimal measuring of the target and environ-
mental properties.

2. The optimal utilization of the measured parameters
within the signal processing.

3. The highly time-variant environmental and target
properties.

4. The existence of multiple targets.

Based on the development of cognitive radio [5], Haykin
proposed in 2005 a cognitive radar [6]. In the follow-
ing years this concept attracted reasonable attention in
the field of radar applications which emphasized different
aspects of cognition [7, 8].

Haykin describes in [5] the echo-location system of bats
as a physical proof of an optimal cognitive localization
system. Bats emit ultrasonic sound pulses that can vary
in frequency, amplitude, and pulse-repetition rate.

Proposal

In this paper we propose a cognitive sonar system that
shows several analogies to the localization system of a
bat. It utilizes information form the environment to
improve target detection, but emphasizes, compared to
known cognitive sonar systems from the literature, on
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Figure 2: Schematic of the signal processing for a cognitive
sonar system.

target-specific parameters. The system is able to work
in real-time on a personal computer (PC) and continu-
ously adapts its receive and transmit signal processing to
its ever changing environment and specific target prop-
erties. There are two ways the system is able to perform
these cognitive adjustments:

1. Change the transmit signal.

2. Change the direction of the transmit pulse.

The information on which these changes depend are ob-
tained by means of an internal tracking system. When
unsecure tracks occur, the system tries to prove or dis-
prove them by optimizing subsequent pings. This is done
using the information fed back from the tracking algo-
rithm and applying external information1. The central
part of the signal processing unit that is capable to handle
this information, is a matched filter and its corresponding
Doppler processing that enables a flexible signal analysis.

The cognitive sonar system

Technical boundary conditions

The proposed signal processing for the cognitive sonar
system is designed to work in a real environment in real-
time. Therefore, certain hardware restrictions, acting as
boundary conditions for the proposed system, need to be
considered in the signal processing.

The used receiver consists of 48 channels (so called
“staves”). The transmitter (projector) consists of 32
channels. The system is able to directly access each stave
individually. Hence it is possible to generate arbitrary
waveformes for each stave which enables the possibility
for transmit beamforming. The resonance frequency lies
between 50-80 kHz and the system works at a sample rate
of 192 kHz. Despite the fact that hydrophone and pro-
jector are physically separated, the system is designed to
work in a mono-static behaviour. The signal processing
is capable to work on a standard PC.

System implementation

The structure of the proposed cognitive sonar system is
shown in Fig. 2. In order to achieve a sufficient real-

1The external information is given by the user or a device and

can include various informations, e. g., water depth or positions of

stationary clutter.

time performance, extensive frequency-domain process-
ing is used, and the signal processing is executed in small
blocks, so called frames2. After one frame on each chan-
nel of the hydrophone is received3, the block is trans-
formed via an analysis filterbank into the frequency do-
main. This is followed by a receive-beamforming module
that forms a direction matrix. The beamforming mod-
ule is implemented as a fixed filter-and-sum beamformer
which utilizes a Hann window[9]. Due to the fact that
bandlimited signals are used, it is possible to save pro-
cessing load by applying the computation only in the
relevant frequency range. This principle is further called
“frequency-selective estimation”.

The direction matrix is “matched-filtered” using a cross-
correlation module, which is able to correlate the incom-
ing signal with several stretched or compressed versions
of the transmitted signal in parallel.

The correlation matrix is processed in a detection
module, consisting of two components: a constant-
false-alarm-rate (CFAR) detector with range-dependent
threshold [10] and an associated connected-component-
analysis (CCA). It is possible to chose between three
CFAR-methods: cell-averaging-, cell-averaging-greatest-
of-, and cell-averaging-least-of-CFAR. The CCA esti-
mates the size and the centroid of a detected object and
generates a contact. This contact data is passed, on the
one hand, to the outside world4 and, on the other hand,
to an internal tracking module. It is to be noted that,
when referring to the tracker in the following, the internal
tracking module is always meant.

The implemented tracking module uses a Multi-
Hypothesis tracker (MHT) based on [11]. This MHT
system is a single-target tracker, suitable in case of miss-
ing detections and false alarms [12], but it also works
for multi-target scenarios, if the targets are well sepa-
rated [13].

Based on the tracked data, a control unit adds a certain
“intelligence” to the system. It decides which transmit-
ted signal is generated and controls the beampattern of
the transmit beamformer. After synthesis, the generated
signal is transmitted through the projector.

The system initially needs to scan its surrounding in a
broad manner. For the sake of simplicity, this mode
is further called “scan mode”. The scan mode uses
Doppler-invariant signals, e. g., frequency-modulated
(FM) signals. When the tracker detects a potential tar-
get in scan mode, the control unit is able to switch to an
“adaptive mode” in which target properties are consid-
ered and optimized waveforms can be applied. The choice
of the targets for which the signal processing is optimized,
depends on the targets’ track quality. To quantify the
quality of the tracks, the tracker utilizes a method called
“Sequential Track Extraction” [14] that outputs a track
score. If the track score is high, it is not necessary to

2Typical frame sizes ranges between 64 and 512 samples.
3Indicated as wet layer in Fig. 2.
4Stated as contact layer in Fig. 2, e. g., an external tracking

system.
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Figure 3: Output of the Cognitive MIMO sonar system for a simulation with one big object and one small target (a). The
correlation output in scan mode (b) and adaptive mode (c) is shown. In adaptive mode, the transmit beamformer blocks the
emission of sound in the direction of the big object.

adapt the waveform, if the track score is low, there are
two main possibilities:

1. There is no real track but the obtained track stems
from false alarms.

2. There is a real track but the measurement method
is not optimal.

In both cases, the adaptive processing can help to im-
prove the result by applying an optimized waveform.
This leads either to discard the track, or it helps to raise
the track score.

This behavior can be supported by a transmit beam-
former that blocks the transmission of the pulse into the
direction of an interferer. In the current implementation
of the system, the control of the blocking beamformer is
carried out from outside, e. g., the user who has a-priori
knowledge. In a future implementation, the control of
the beampatttern can automatically be controlled based
on tracking data through the control unit.

Using target-specific transmit signals and transmit beam-
forming patterns leads to the drawback of getting blind
for the major environment except for particular targets.
Therefore it is important to switch the adapt mode and
the scan mode with a regular heuristic. In the current
implementation, the system is alternating between the
two modes. This can be improved by individual transmit
patterns. It is possible to adjust the inter-ping interval
individually depending on the targets’ distance. This can
increase the pulse repetition rate and thus optimize the
information flow per time.

Simulation results

In this section, the system behavior is shown for two par-
ticular simulations, to show the potential of the adaptive
signal processing. The first simulation emphasizes on
the advantage of using a transmit beamformer in adap-
tive mode. The second simulation shows the ability of
the system to adapt the transmit signal to specific target
velocities.

Figs. 3 and 4 are showing the results of the two simula-

tions. In both figures, the transmitter and the receiver
are located at the origin of the coordinates and the sys-
tem is looking forward in y-coordinate direction with a
fan width of 120 degrees. Figs. 3 (a) and 4 (a), respec-
tively, depict the location of certain objects in the par-
ticular simulative situation. Figs. 3 and 4 (b) and (c)
show the output of the correlator module for the given
situation.

In the first simulation, two objects are located in a noisy
environment (see Fig. 3 (a)). One big unwanted object
(left) with a relative high target strength and a small tar-
get (right) with a relative low target strength are placed
close to each other. The system is initially situated in
scan mode, where a CW-transmit signal is used and the
pulse is transmitted omni-directionally. In Fig. 3 (b) the
big object is clearly visible at the correlation output (red
arrow). The small target is hidden within the grating
lobes of the receive beamformer resulting from the big
object (white arrow). The detection algorithm thus is
not able to detect the target.

With prior knowledge (e. g., sea maps, sonar operator
or observation) the system is able to change the trans-
mit beampattern in adaptive mode. The transmit beam-
former blocks the transmission of the signal in the direc-
tion of the big object. The result is shown in Fig. 3 (c).
The target is clearly visible (white arrow) while the
backscattering strength of the big object is reduced (red
arrow). Hence the detection of the small target is possi-
ble.

In the second simulation, three items are located in a
cluttered, noisy environment (see Fig. 4 (a)). One small
target with a relatively low target strength is moving at
a radial speed of 8m/s . Two big targets, with a rel-
atively high target strength, are moving at a different
speed. In scan mode, the system uses an FM signal with
an omni-directional transmit beampattern. The result of
the correlation module is shown in Fig. 4 (b). The de-
tectability of the two big targest results in a high track
score of the tracker(red squares). The small target (red
arrow), is also tracked but results in a low track score
due to its low detectability. The system tries to raise the
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Figure 4: Output of the Cognitive MIMO sonar system for a simulation with three targets (a). The correlation output in
scan mode (b) and adaptive mode (c) is shown. In adaptive mode, a Doppler processed correlation, tailored on the small target
velocity, is used.

detectability by switching into adaptive mode and hence
to improve the track score. In Fig. 4 (c) the correlation
output of the adaptive mode is shown. The system now
uses a Doppler sensitive CW pulse, and the direction ma-
trix now is correlated with a Doppler-processed version
of the transmit pulse. It can be seen that the stationary
clutter and the two big targets are not visible anymore
(red squares) while the small target is clearly seen (red
arrow).

Conclusion and Outlook

In this contribution, the principle of a cognitive sonar
system was shown and the implementation of a real-time
cognitive MIMO sonar system was proposed. Simulation
results show that the high amount of flexibility enables
the system to enhance the target detection through us-
ing adaptive signal processing. Further investigations are
necessary to improve the system and to prove this con-
cept in a real-life environment.
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