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Abstract 
Acoustic event detection (AED) is increasingly present in 
applications such as health monitoring, security or home 
automation. This paper investigates the influence of 
reverberation on the performance of an AED system and the 
potential benefit of applying single-channel spectral 
reverberation suppression (SRS) as preprocessing for such a 
system. Experiments, conducted using a dataset of anechoic 
acoustic events and publicly available datasets of room 
impulse responses (RIRs) show that the application of SRS 
as preprocessing can increase the accuracy obtained in 
reverberant conditions. The improvement in performance 
obtained by applying SRS is particularly significant under 
conditions with larger reverberation times. 
 
Index Terms: Acoustic event detection, spectral 
reverberation suppression, LRSV estimation 

1. Introduction 
Acoustic event detection (AED) is increasingly present in 
applications such as health monitoring, home surveillance or 
security. Such applications require AED systems to be 
highly robust, i.e., to yield a high recognition accuracy even 
in the presence of acoustic disturbances. These disturbances 
consist of environmental noise and, in an enclosed space, of 
reverberation characterized by the room impulse response 
(RIR). Though both noise and reverberation are known to 
have a detrimental effect on the performance of AED 
systems, the work on single-channel preprocessing for AED 
has been focused mainly on the reduction of environmental 
noise [1], often using approaches initially developed in the 
context of speech enhancement. Using and adapting speech 
enhancement algorithms to improve the performance of a 
recognizer is a common approach in the field of automatic 
speech recognition (ASR) and we will use this approach in 
the context of AED. In single-channel scenarios, such 
algorithms often rely on spectral suppression to reduce both 
noise and reverberation [2]. Spectral suppression consists in 
applying a real valued spectral gain to the short-time Fourier 
transform (STFT) of the microphone signal. The 
computation of this spectral gain requires an estimate of the 
spectral variance of the interference to be suppressed. The 
spectral suppression scheme used in this thesis applies a 
spectral gain [3] computed from an estimate of the late 
reverberant spectral variance (LRSV) similarly as studied in 
the context of ASR [4]. We consider estimators of the LRSV 
[5,6] based on statistical models of the RIR [7, 8]. We refer 
to the application of a spectral gain computed from an 
estimate of the LRSV as spectral reverberation suppression 
(SRS). This paper investigates the influence of reverberation  
 

 
 
on the performance of an AED system and the potential 
benefit of applying SRS as preprocessing for such a system. 
 
The remainder of this paper is structured as follows: In 
Section 2, the considered signal model and the spectral 
reverberation suppression algorithms are described. Section 
3 presents the corpus used for our experiments. In Section 4 
the experiments and their results are discussed. Finally 
conclusions are drawn in Section 5. 
 

2. Reverberation Suppression 
The microphone signal at time sample , consists of 
the anechoic event signal  emitted at the position of the 
source and corrupted by reverberation, characterized by the 
RIR . Through this paper, we consider that no noise 
source is present, and thus express the microphone signal as 
 

              (1) 
 
The RIR can be considered as splitted between its early and 
late part, and eq. (1) can be expressed as 
 
      ,      (2) 
 
with  and  denoting the early and late reverberant 
source components, respectively. In the STFT domain with 
the time-frame index  and the discrete frequency index , 
Eq. (2) can be expressed as 
 

          (3) 
 
with    and  denoting the STFTs of  

 and , respectively. In the remainder of this paper, 
the symbol ˆ will be used to denote estimated quantities. 
 

2.1 Spectral Gain 
The application of SRS consists in applying a spectral gain 

to the STFT of the input signal in order to obtain an 
estimate  of such as 
 

.                        (4) 
 
Assuming that  and  are uncorrelated, the 
spectral variance  of the microphone signal can be 
expressed as 
 

,                (5) 
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with   and  denoting the early and late 
reverberant spectral variances, respectively. The spectral 
gain of Eq. (4) can be designed as a Wiener gain, i.e.  
                              .          (6) 

 

 
 

Figure 1: Overview of the application of SRS 

The computation of the spectral gain  requires an 
estimate  of the LRSV. Thus, SRS (Fig. 1) processed 
based on estimating the LRSV in order to compute the 
spectral gain that is applied to the STFT of the input signal. 
 
Several methods exist to compute the spectral gain. One of 
these is the minimum mean-square error log-spectral 
amplitude estimator (MMSE-LSA), which is used in the 
remainder of this paper. The estimate of  can be 
obtained using recursive temporal smoothing, i.e. 
 

     (7) 
 
with  denoting a smoothing parameter. 
 

2.1 LRSV estimation from a statistical model 
It has been proposed in [7] to model the RIR base on a non-
stationary stochastic process, i.e. 

 

          (8) 

 
with  denoting a white zero-mean Gaussian noise signal 
and with  denoting a damping constant that is related to the 
T60 by 
 

.                 (9) 

 
The model from Eq. (8) is valid only for DRR ≤ 0, i.e. when 
the distance between the source and the microphone is larger 
than the critical distance. This model has been generalized in 
[8] to take into account the cases in which DRR > 0. In this 
generalized model, the RIR model is split into two segments 
leading to 
 

,       (10) 
 
with  denoting the spectral variance of the speech 
convolved with the direct path and  the estimate of 
the spectral variance of all reverberations. The estimate of 
the reverberant spectral variance can now be expressed as a 
function of the estimated microphone signal, of a ratio of 
reverberant to direct path relation  , 

         (11) 
 
and the damping constant  as, 
 

 .                     (12) 

 
Hence, the LRSV can be estimated by  
 

,  (13) 
 
which will be referred to as the Habets estimator. 
Additionally, for , the LRSV is given by 
 

,    (14) 
 
which will be referred to as the Lebart estimator. The 
computation of the damping constant  requires an 
estimate of T60 and the ratio  that is related to the DRR 
by 
 

.       (15) 
 
In this work, these values were measured from the RIR. 
 

3. Dataset 
In order to conduct the experiments, a database of both 
anechoic and reverberant signals was recorded. To the best 
of our knowledge, no public database of anechoic recordings 
designed for the evaluation of AED exists. Therefore, 
acoustic events were recorded in an anechoic chamber. We 
were interested in events of short duration, possibly 
applicable to human-machine interaction (i.e. can be used to 
control devices), and ease of recordings. Based on these 
criteria, we recorded five classes of events: "clap", "clear 
throat", "cough", "tongue flipping" and "snap". The database 
of anechoic recordings was split to create a training set and a 
testing set. In order to create reverberant signals, the 
anechoic signals were convolved with recorded RIRs, from 
public RIRs databases. These databases were chosen to 
cover a wide range of RIRs parameters, i.e. in our case, wide 
ranges of T60 and DRRs. 
 

3.1 Training Set 
For the training set, a database of RIRs from three different 
rooms at two different distances (per room) has been used 
[9]. In order to obtain reverberant signals, 70% of the 
anechoic recordings were randomly selected and convolved 
with these RIRs. All RIRs correspond to a combination of a 
room and distance between source and microphone. In the 
remainder of this paper the combination of a room and a 
distance will be referred to as a "condition". Three different 
training sets were constructed from the gathered data. The 
first set, referred to as "anechoic training", consists of 
anechoic data. The second set, referred to as "1-room 
training", consists of reverberant data obtained by 
convolving the anechoic signals from the "anechoic training" 
set with the RIRs recorded in Room 2 at a distance of either 
1 m or 2 m from the source. Therefore, the set "1-room 

DAGA 2015 Nürnberg

1518



training" contains 2 different conditions. The third set, 
corresponds to multi-condition training and will be referred 
to as "MC training". It consists of reverberant data obtained 
by convolving the anechoic signals from the "anechoic 
training" set with the RIRs recorded in Room 1, 2 and 3 at a 
distance of either 1 m or 2 m from the source. Therefore, the 
set "MC training" contains 6 different conditions. After all 
the data has been convolved with the available RIRs, the set 
"MC training" consists of a total of 2202 utterances of 
acoustic events.  
 

3.1 Testing Set 
The testing set was generated using the remaining 30% of 
the anechoic recordings and convolving them with a second 
database of RIRs [10]. All testing conditions and their 
characteristics are summarized in Tab. 4.3, along with their 
corresponding T60 and DRR. After all the data has been 
convolved with the available RIRs, the testing set consists of 
a total of 7728 utterances of acoustic events. All signals 
were sampled at a sampling frequency of 16 kHz. The 
STFTs were computed using a Hamming window with a 
length of 25 ms and an overlap of 15 ms. The necessary 
estimation of the T60 and of the DRR for applying SRS, was 
made by measuring them from the RIRs. The T60 is 
measured by the Schroeder method [11]. The DRR has been 
measured using eq. (14). The AED system used 39 MFCCs 
(including deltas and double-deltas) per frame and three 
states HMMs with ten Gaussian components per state. 
 

 4. Experimental Results 

4.1 Influence of reverberation on AED performance 
To evaluate the influence of reverberation on the 
performance of an AED system and the potential benefits of 
training on reverberant data the AED system is applied to the 
(unprocessed) data from the testing set using statistical 
acoustic models constructed from the three different training 
sets. In addition, the scores obtained when using anechoic 
data for both training and testing will be presented and 
denoted by "optimum". The "optimum" represents the 
performance that can be obtained if perfect dereverberation 
was achieved. In this experiment, the performance of the 
AED system is measured in terms of accuracy, defined as 
 

. 

 

The results, in terms of accuracy, are depicted in Fig. 2, as a 
function of either the T60 (top) or the DRR (bottom).  
 
The depicted scores correspond to the accuracy obtained on 
the testing set, of reverberant data, when using statistical 
models trained on the three considered training sets. The 
scores labeled as "optimum" yield the highest accuracy, as 
expected, illustrating that the presence of reverberation is 
detrimental to the performance. This detrimental effect is 
particularly noticeable for higher values of T60 and lower 
values of DRR. This degradation in accuracy is particularly 
severe in the case "anechoic training", where the accuracy 
decreases as low as 20 %, which in our five classes 
recognition task corresponds to the chance level. The scores 

achieved using "1-room training" and "MC training" 
illustrate the increase in robustness that can be obtained by 
training on reverberant data. Both training sets yield similar 
improvement, with an improvement of 20 to 40 % compared 
to the performance obtained using "anechoic training".   
The small difference in performance between "1-room 
training" and "MC training" could be explained by the 
similarity of both training sets. A slightly higher accuracy is 
obtained using "MC training" for conditions with higher 
values of > 3 s.  

Figure 2: Accuracy as a function of the T60 (top) and DRR 
(bottom) obtained on reverberant data, using the three different 
considered training sets. Optimum denotes the use of anechoic data 
for both training and testing. An accuracy of 20 % corresponds to 
the chance level. 
 

4.2 Application of SRS as preprocessing for AED 
This experiment examines the benefit on the performance of 
an AED system when applying SRS. Here, SRS is applied 
using an estimate of the LRSV obtained using either the 
Lebart [5] estimator or the Habets estimator [6]. The 
required estimates of the T60, for the Lebart estimator, and of 
both T60 and DRR, for the Habets estimator, have been 
measured from the RIRs. The same SRS scheme has always 
been applied to both training and testing data, except for 
"anechoic training" for which the anechoic data remained 
unprocessed. In this experiment, the performance of the 
AED system is measured in terms of relative improvement 
(Rel. Imp.), compared to the performance of the system 
obtained during the experiment described in Section 4.1. The 
relative improvement, compared to the results from Fig. 2, is 
depicted in Fig. 3, as a function of the . These scores 
correspond to the relative improvement obtained when 
applying SRS using either the Lebart or the Habets estimator 
of the LRSV and considering the first 48 ms of the RIR that 
correspond to the early reflections. A limited improvement is 
noticable for "anechoic training" when applying SRS. 
Since both LRSV estimators are based on similar models, 
similar results could have been expected. However, this is 
not the case when using the training sets "1-room training" 
and "MC training" where a considerable difference can be 
observed. The best performance, obtained using the Habets 
estimator, is observed in the case of "anechoic training", in 
which the highest relative improvement (around 35 %) is 
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obtained for low values of T60. For higher values of  the 
improvement observed is negative for "1-room training" and 
"MC training" when using the Lebart estimator of the LRSV. 
The Habets estimator performs well in this case. For T60 > 4 
s, a higher relative improvement is obtained. By using SRS 
as preprocessing, an increase in the performance of the 
considered AED system can be obtained, but only if using an 
adequate estimator for the LRSV. 
 

 
Figure 3: Relative improvement as a function of the , for three 
training sets, between accuracies obtained using unprocessed data 
(cf. Fig. 2) and data processed using SRS using either the Lebart of 
the Habets estimator of the LRSV. In the case of the anechoic 
training set, only the testing data has been processed. 

5. Summary and Conclusion 
The performance of the considered AED system has been 
evaluated for three different training sets, constructed using 
a database of anechoic acoustic events and publicly available 
databases of RIRs.  The results demonstrated that 
reverberation is detrimental to the performance of an AED 
system, even in conditions with short reverberation times. It 
appeared as well that this deterioration in performance gets 
higher for higher values of T60 and lower values of DRR. 
Indeed, when training on anechoic data the "optimum" 
performance (testing on anechoic data) yields an accuracy of 
80 % while testing on reverberant data yields an accuracy 
close to 20 %, i.e. the chance level in the considered five 
classes classification task. Training on reverberant data, i.e. 
"1-room training" and "MC training" through this thesis, 
improved the robustness to reverberation by up to 40 % 
(relative improvement) compared to training on anechoic 
data. An SRS scheme has been applied as preprocessing in 
order to improve the accuracy in reverberant conditions. 
This SRS scheme consists in the application of a spectral is 
based on a gain computed from an estimate of the LRSV. 
Two estimators of the LRSV have been considered, referred 
to as either the Lebart or the Habets estimator. It appeared 
that when using the Lebart estimator, SRS could actually 
decrease the performance of the AED system. However, 
when using the Habets estimator, the performance is 

increased in all conditions, with a relative improvement up 
to 50 % compared to the accuracy obtained on unprocessed 
reverberant data. However, the obtained results suggest that 
training on reverberant data is still beneficial for robustness 
against reverberation, though the application of SRS can 
lead to an additional improvement of the accuracy.  
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