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1. Introduction 
Robust distant speech recognition greatly benefits those 
applications for which hands are not free to use and 
significantly increasesthe convenience of use, e.g., the 
source can move freely while the microphone(s) is/are 
placed in a certain position in distance to the speech source. 
Unfortunately, in distant talking scenarios the acoustic 
environment adds disturbances to the speech signal, i.e. 
problems arise due to interfering noises as well as 
reverberation caused by multiple reflections of the desired 
speech signal at the room boundaries and other objects in the 
room. This reverberation effect degrades the speech quality 
and speech intelligibility [1], as well as deteriorates the 
performance of automatic speech recognition (ASR) [2]. 

Reverberant speech can be perceived as sounding distant 
with noticeable coloration and echo. These detrimental 
perceptual effects generally increase with increasing the 
room volume, as well as with increasingthe distance between 
the source and the microphone [3]. Furthermore, with the 
spread in the time of arrival of reflections at the microphone, 
reverberation causes blurring of speech phonemes. 
Reduction of these detrimental effects is evidently of 
considerable practical importance. Although several 
pioneering efforts were made [4][5], it is still very 
challenging to compensatefor such long-term distortions. 
Nowadays, improving the robustness of the ASR systems in 
reverberant environments has been paid increased attention 
[6][7][8]. Still, overcoming the reverberation problem is 
paramount for realizing distant-talking speech recognizers. 

The focus of this work is on removing the effects of 
reverberation by pre-processing of the speech signal by a 
front-end processing procedure before the feature extraction 
phase of the ASR systems. By applying different speech 
dereverberation strategies in single- and multi-microphone 
scenarios, we intend to alleviate the reverberation effect in 
order to improve the robustness of the ASR systems in 
different reverberant environments. We also use different 
short time Fourier transform (STFT) lengths to analyze the 
separation of early reflection and late reverberation tail w.r.t. 
the performance of ASR systems. 

2. System Combination Strategies 
As depicted in Fig.1, system (I) is based on a minimum 
mean square error (MMSE) estimator as pre-processor in 
each of the input channels of the beamformer. In this 
scenario, the late reverberation spectral variance (LRSV) 
estimation is carried out for the individual channels 
separately. Since the pre-processor does not change the 

 

phase of the signal, the spatial information for the 
beamformer will not be affected. System (II) uses an 
independent beamformer to get an enhanced spatially 
filtered signal followed by a single-microphone 
dereverberation system. Since the LRSV and the MMSE 
estimators use this spatially filtered signal, the computational 
complexity is less. The spatial filtering may, however, cause 
distortions to these estimator inputs due to the spatial 
correlation between microphone signals. To avoid the spatial 
correlation effect on the LRSV estimators [9] in system (II), 
system (III) uses a spatially averaged LRSV estimate 
obtained from all the microphone signals refined by the 
minimum variance distortionless response (MVDR) 
beamformer. System (IV) illustrates a multi-channel MMSE 
enhancement scheme [10], which can be decomposed into an 
MVDR beamformer followed by a single-channel Wiener 
filter. Here the MMSE estimator is actually a post-filter 
[11][12]. 
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Fig. 1: Four different system combinations (I)-(IV) consisting of 
the MVDR beamformers and the MMSE estimators, as well as the 
respective LRSV estimators. 

3. Spectral Enhancement for Dereverberation 
The observed reverberant speech signal can be treated as the 
mixture of early reflections and the late reverberation, 
expressed in the STFT domain as, 

ℓ ℓ ℓ ,                     (1) 

where ℓ is the frame index and  is the frequency bin. The 
early reflections ℓ  are composed of the direct signal 
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and early reflections, which are usually set to 20-80 ms [3]. 
As well, early reflections play an important role for 
enhancing the speech intelligibility. In contrast, late 
reverberation ℓ  degrades the signal quality [9][13]. In 
this paper the noise is neglected since the focus is to remove 
the late reverberation. In order to suppress the late 
reverberation effect, a spectral weighing function ℓ  
determined by a parameterized MMSE estimator [14] which 
shows superior performance compared to the Wiener filter in 
our pilot experiments, is applied to the magnitude of the 
reverberant spectral variance in (1), resulting in [15], 

ℓ ℓ ℓ             (2) 

where  is a lower bound of the weighting function. The 
a-priori early reflection to late reverberation energy 
rationecessary in (2) to calculate ℓ  is estimated by the 
decision-directed (dd) approach [16] which performs slightly 
better than the temporal cepstrum smoothing technique used 
in [8] for dereverberation in our pilot experiments. By this 
the LRSV ℓ  estimation is required for (2) as also 
shown in Fig. 1. A generalized statistical reverberation 
model [17] is used here which separates the direct path from 
Polack’s room impulse response (RIR) model [15], resulting 
in the spectral variance of the RIR  in the STFT domain 
as 

ℓ
ℓ

ℓ ℓ
             (3) 

where the decay coefficient is related to the reverberation 
time  by .  and  denote the 
variances of the direct path and the reverberant part and  
represents the STFT frame shift, i.e. the hop size. The direct 
signal to reverberation ratio ( ) can then be expressed as 
[17] 

ℓ

ℓ                  (4) 

The  is related to the clarity index due to the frame shift 
 [3]. Now the reverberation variancecan be obtained using 

(4) as [16] (ignoring the frequency index for simplicity) 

ℓ ℓ ℓ ,    (5) 

where  is calculated from the  in (4), 
constraint inthe range of (0, 1]. Then, the LRSV is given by 

ℓ ℓ ,               (6) 

where  denotes the number of frames which corresponds 
to the duration of early reflections of the RIR. An 
instantaneous estimate of the input reverberant spectral 
variance ℓ  in (5) can be obtained by a smoothed version 
of ℓ  as 

ℓ ℓ ℓ ℓ ℓ ,       (7) 

where the smoothing constant  is calculated by 
. According to [9], in order to improve the tracking 

performance of the reverberant speech onset,  shall be set to 
be lower than  when ℓ ℓ . Note that such an 
LRSV estimator requires a-priori information of  and 
DRR or clarity index at least in full-bandmode, which in 
practice can be estimated by [18][19]. 

4. Dereverberation by Multi-microphone 
Beamforming and Post-Filtering 

When multiple microphones are available, beamforming and 
post-filtering techniques can be used for the purpose of 
dereverberation [20][21][22][23]. The MVDR beamformer 
which performs best in diffuse interference fields is used 
here. This beamformer minimizes the output power while 
keeping a unity gain in the desired direction and its 
coefficients can be derived as, 

ℓ ℓ ,                         (8) 

where  is the Hermitian transpose and  is the steering 
vector. In order to vary the beamformer used, the coherence 
matrix of the interfering signals  is replaced by a diffuse 
interference field  for the superdirective (SD) 
beamformer [24] or by the identity matrix  for the delay and 
sum (DS) beamformer. 

A post-filtering approach is used to calculate the coefficients 
in system (IV) [11] which can be expressed as an MVDR 
beamformer with a post-filter ℓ ℓ ℓ  with the 
post filter transfer function [12] expressed by 

ℓ
ℓ

ℓ
,     (9) 

with being the auto-correlation of the speech signal in 
microphone channel . In order to alleviate speech 
distortions in ASR systems, a lower bound  is 
introduced. The early reverberation variance (the cross 
correlation term) can be estimated as [11] 

ℓ
ℓ ℓ ℓ

,      (10) 

where  calculates the real part of a complex signal. A 
time alignment is required for  when calculating (10) [11], 
which can beachieved by the steering vector  as seen in 
Fig. 1 (IV). In (10) a first-order recursive update of the auto- 
and cross-correlation calculationsis applied and a maximal 
threshold is introduced to avoid the denominator being non-
positive. The LRSV coherence matrix in (8) can also be 
replaced by the LRSV coherence  estimated from the  
received microphone signals. 

5. Experimental Results 
The WSJCAM0 British English corpus [25] was used as 
database of clean (anechoic) speech utterances. It contains 
7861 utterances for training and another 742 for testing at a 
sampling rate of 16 kHz. 18 real-world RIRs recorded by a 
circular microphone array (M = 8) with 20 cm diameter from 
the REVERB Challenge [7] were used for multi-condition 
training mode and another 6 RIRs [7] for generating various 
test sets (denoted by T1-T6 in the following) with different 
T60 and DRR values, as listed in Tab. 1. The STFT was 
computed using a Hanning window with two different 
analysis window lengths, 32 ms with 1/8 overlap (short 
term) and 96 ms with 1/2 overlap (long term). A white noise 
gain constraint of 10 dB was selected for the MVDR 
beamformer in (8). The weighting factor of 0.5 was used in 
the dd approach.  was chosen as  in (7).  in (2) 
was set to -10 dB as a good value to the ASR performance. 
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 in (9) was chosen as 0.1 and the smoothing factor of the 
first-order recursive filter was 0.875 in (10). Directly from 
the RIRs in full-band mode, DRR or  was calculated 
accordingly and  was determined by using Schroeder’s 
method [26]. 
 

Test T1 T2 T3 T4 T5 T6 

Room Small Small Medium Medium Large Large 

Position Near Far Near Far Near Far 

DRR (dB) 17.73 4.56 11.42 0.25 10.40 -1.70 

T60 (ms) 218.29 229.91 500.06 519.44 719.32 747.38 

Tab.1Characteristics of all test sets T1-T6 with mean DRR and T60 
values (from all 8 channels). 

 
The framework for the ASR experiments was implemented 
based on the Hidden Markov Model Toolkit (HTK) [27]. 
Overlapping speech segments of 25 ms duration and 10 ms 
shift were used for the calculation of mel-frequency cepstral 
coefficients with delta and double-delta coefficients as well 
as cepstral mean and variance normalization. Context-
dependent triphone hidden Markov models with 3 states per 
model were applied together with 12 Gaussian mixture 
models per state and a language scaling factor of 14.0 for the 
5k-word-bigram language model. 
 
Fig. 2 shows the word error rate (WER) results of our 
systems under test with 32 ms STFT analysis window 
length. The baseline results come from the multi-condition 
training with the original reverberant speech signal from the 
first microphone, i.e. i=1. For single-microphone scenarios, 
the MMSE estimator is applied to the first channel. For 
comparison, the results with beamformers alone (either with 
SD or DS) are presented. The rest are the system 
combination outputs (cf. Fig. 1). Both the MMSE and the 
beamformer alone scenarios improve the ASR output, with 
the SD beamformer showing lower WERs of approximately 
4% compared to the single microphone MMSE estimator.  
 
The performances of system (I) and the MVDR-only system 
show very similar results. For test sets T1, T3 and T5, i.e. 
the near-position tests, higher WERs can be observed when 
compared to the SD beamformer alone. This may be caused 
by the distortions of the diffuse field because of the front 
MMSE estimators. Compared to system (I), 1% WER 
improvement can be obtained by system (II). A more 
accurate LRSV estimate is employed in system (III) which 
results in a slightly better performance than system (II). This 
indicates that, the spatial correlation introduced by the 
beamformer blurs the MVDR-filtered RIR in system (II) so 
that it cannot exactly extract the true late reverberation. 
 
Overall, average WER reduction of 6.17% is obtained by 
system (III) with the SD beamformer compared to the 
baseline. Such improvements become more obvious for the 
far-position testsets such as T4 and T6 than the near-position 
test sets such as T3. A similar trend can be observed for 
system (IV), for which the SD beamformer still performs 
best. It can also be observed that the results degrade when 
the beamformer in (1) uses the LRSV coherence matrix. A 

possible explanation is that the late reverberation behaves 
non-stationary and its coherence actually does not match the 
diffuse property, especially for the near-position test sets T1, 
T3 and T5 as discussed in [28]. 

 

Fig.2 WERs of the dereverberation strategies with 32 ms STFT 
analysis window length and 1/8 hop size. 

 
Fig.3 WERs of system (II) and (III) with two different frame 
lengths, i.e. short and long term STFT analysis window length. 

Fig. 3 compares the WERs of the two best performing 
systems (II) and (III) with two different STFT analysis 
window sizes. Using shorter frame sizes benefits in reducing 
WERs. The results shows that the 32 ms with 1/8 hop 
window improves the WER by 4.18% and 3.57% compared 
to the 96 ms window with 1/2 overlap window with systems 
(II) and (III) respectively.  

 
Fig.4 PESQ scores from the output of different systems; a male 
utterance from the test data is employed and the respective clean 
(anechoic) speech is used as the reference signal. 

A perceptual evaluation of speech quality (PESQ) [29] has 
also been conducted. Fig. 4 shows the PESQ scores of the 
different proposed systems with one male test utterance. The 
performance of multi-microphone dereverberation strategies 
in PESQ tests is much better than that of single-microphone 
approaches. Here system (III) shows the best results 
compared to all other scenarios, which is in consilience with 
the WERs results in Fig. 2.  
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6. Conclusion 
This work explored possible combination architectures for 
dereverberation by (single-microphone) spectral 
enhancement schemes and (multi-microphone) beamforming 
with the aim of improving ASR performancein various 
reverberant environments. Results indicate that all the 
combined systems are able to provide benefits for ASR 
systemsand specifically, the system (III) combining the SD 
beamformer and the MMSE estimator with the LRSV 
refinement by the MVDR beamformer coefficients achieves 
nearly 30% average relative WER improvement compared to 
the baseline, as well as 15% average relative PESQ boost 
(from one example) compared to the first channel 
reverberant speech signal. As well, short STFT analysis 
window length provides better ASR performance than a 
longer window length. 
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