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tionNowadays 
ars are equipped with various di�erent sen-sors, e.g., radar or ultrasoni
 sensors for distan
e mea-suring and parking assistan
e, 
ameras for light-
ontrolor lane departure alerting, tra�
 sign re
ognition et
.A
ousti
 sensors �nd their way into 
ars mainly for au-tomati
 spee
h re
ognition (ASR) for in-
ar 
ommuni
a-tion, entertainment and navigation systems [1℄. However,a
ousti
al sensors are 
apable of re
ognizing many more
ar-related events like sirens [2℄ and 
ar horns [3℄, lanedeparture, road or tire 
onditions, engine failures, bro-ken or worn 
hassis parts, loose parts, broken tie rods,broken/
ra
ked exhaust, worn 
lut
h et
.In this paper, a
ousti
ally based dete
tion of foreignobje
ts in tires is investigated. This appli
ation s
enariois important sin
e obje
ts in tires 
an 
ause pun
turesand, thus, lead to a

idents in the worst 
ase. The al-ready existing pressure sensors for tires installed at thetires themselves 
an only dete
t an already existing 
rit-i
al air loss. However, mi
rophones 
an dete
t the tiredamage before a signi�
ant loss of air pressure is mea-surable. For this study, a sound database using a
ousti
sensors at di�erent 
ar positions has been re
orded in realenvironments. Di�erent algorithms to re
ognize obje
tsin tires will be 
ompared in this paper.Dete
tion of Nails in TiresIf an obje
t is stu
k to the 
ap of a tire, e.g., a s
rew, itwill 
ause a periodi
ally repeating ti
king sound with thefrequen
y of the spinning tire. Thus, we 
onsider an ap-proa
h that is based on the 
omparison of the frequen
yof the a
ousti
 signal and the tire frequen
y to dete
t aforeign obje
t. A blo
k diagram of the frequen
y estima-tion based on a
ousti
al signals is depi
ted in Figure 1.Therefore, the sampled signal s (n) is pro
essed blo
k-wise, i.e.,
y (n, ℓ) = s (n+ ℓ · ns)wre
t

N (n) (1)with n denoting the sampling index, ℓ the blo
k index,
ns the sample shift and wre
t

N (n) a re
tangular windowof length N . The in�uen
e of N will be investigatedin detail. A signal blo
k of 3 s duration is depi
ted inFigure 2, upper panel.Sin
e tra�
 and environmental noises often have mu
henergy at low frequen
ies, a pre-emphasis �lter is applied,yielding
y′ (n, ℓ) = y (n, ℓ)− γ · y (n− 1, ℓ) (2)where γ is a fa
tor whi
h 
ontrols the relation betweenhigh and low frequen
y energies. The pre-emphasizedsignal is shown in Figure 2, middle panel.
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argmax ^y(n,l) f f(l)Figure 1: Overview of the frequen
y estimation pro
e-dure. The signal y (k, ℓ) is �ltered by a pre-emphasis�lter. A peak amplifying method is applied that is eitherbased on auto regression or short-time averaging. Noiseredu
tion is applied to the absolute value of the result.A frequen
y analysis is 
ondu
ted afterwards. Four ap-proa
hes have been tested based on DFT, Comb-�ltering(Comb), modulation spe
trogram (mod. STFT), modu-lation Mel-spe
trogram (mod. Mel). The frequen
y withmaximal energy f̂ (ℓ) is the out
ome of the estimationpro
edure.The ti
king sound from obje
ts in a moving tire resultsin periodi
al peaks in the time representation of the sig-nal. A me
hanism to amplify peaks and inhibit othersignal 
omponents is applied. Two approa
hes have beentested. For the �rst approa
h, the signal y′ (n, ℓ) is av-eraged for short windows of length Nav and subtra
tedfrom y′ (n, ℓ), i.e.,
ŷ(av) (n, ℓ) = y′ (n, ℓ)−

1

Nav 0.5Nav
∑

i=−0.5Nav y′ (n+ i, ℓ). (3)The other approa
h utilizes the auto regression fun
-tion yielding
ŷ(reg) (n, ℓ) = y′ (n, ℓ)−

Nreg
−1

∑

i=0

aiy
′ (n− i, ℓ) (4)where ai denotes regression 
oe�
ients and N reg the re-gression dimensionality. The resulting signal is depi
tedin Figure 2, lower panel. The noise 
ontained in the ab-solute value of this resulting signal |ŷ (n, ℓ)| is redu
ed bya threshold, i.e.,

ỹ (n, ℓ) =

{

|ŷ (n, ℓ)| for |ŷ (n, ℓ)| > α · σℓ + µℓ,

0 otherwise, (5)with µℓ and σℓ denoting the mean and standard deviationof the signal at blo
k ℓ, respe
tively.
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0 0.5 1 1.5 2 2.5 3Figure 2: Pre-pro
essing of the signal. In the upperpanel, a signal blo
k y (n, ℓ) of 3 s duration is shown. Thepre-emphasized signal y′ (n, ℓ) is depi
ted in the middlepanel. The signal ∣∣ŷ(reg) (n, ℓ)∣∣ after applying the autoregression method is depi
ted in gray in the lower panel.The signal 
omponents above the threshold (horizontal,dashed line), that are further pro
essed, are marked inbla
k.After pre-pro
essing, the frequen
y modulations areanalyzed. The �rst approa
h is based on the DFT
ỹ (k1, ℓ) =

∞
∑

n=−∞

ỹ (n, ℓ)wHamm
N (n+ ℓ · ns)e−j2πk1n/N(6)with wHamm

N (n) denoting a Hamming window of length
N and k1 = 0 . . .N − 1 indexing the frequen
y bins. ThedB-s
aled spe
trum is used, i.e,

Y1 (k1, ℓ) = 10 log
10

(ỹ (k1, ℓ))
2
. (7)The se
ond approa
h applies a 
omb �lterbank to thespe
trogram of Eq. (6). A feedba
k 
omb �lter is de�nedin the frequen
y domain as

H
omb (k1, k2) = (1− βe−j2πk1/k2

)−1

, (8)where k2 is indexing the 
omb frequen
y and β is a gainfa
tor. Hen
e, the spe
trum using a 
omb �lter bank isde�ned by
Y2 (k2, ℓ) = 10 log

10

(

∑

k1

H
omb (k1, k2)ỹ (k1, ℓ))2

. (9)The third approa
h 
omputes a spe
trogram for ea
hframe ℓ, i.e.,
Y ′ (k′, l, ℓ) =

∞
∑

n=−∞

ỹ (n, ℓ)wHamm
L (n+ l · ls)e

−j2πk′n/L.(10)where l is a subframe index, L is the number of samplesper subframe (≡ 25 ms) and ls the hop size (≡ 10 ms).

The modulation spe
trogram is obtained by applying aFourier transform to the subframes l
Y ′′ (k′, k3, ℓ) =

∞
∑

l=−∞

Y ′ (k′, l, ℓ)wHamm
L/2 (l)e−j2πk3k

′
2/L.(11)The resulting amplitude modulation spe
trogram issummed over the frequen
y bands, i.e.,

Y3 (k3, ℓ) = 10 log
10

(

∑

k′

Y ′′ (k′, k3, ℓ)

)2

. (12)The fourth approa
h applies a Mel-�lterbank
Hmel (k4, k′) to the spe
trum Y ′ (k′, l, ℓ), i.e.,

Y ′′′ (k4, l, ℓ) =
∑

k′

Hmel (k4, k′)Y ′ (k′, l, ℓ), (13)where k4 is indexing the Mel-bins. The further steps forthe Mel approa
h are equal to that of Y3 (k3, ℓ), i.e., ap-plying Eq. (11) and Eq. (12), leading to Y4 (k4, ℓ). All ap-proa
hes lead to a spe
tral power density Yv (kv, ℓ) with
Kv frequen
y bins per approa
h v. Thus, the frequen
yestimation is given by

f̂v (ℓ) = argmax
kv

{Yv (kv, ℓ)} ·
fs

Kv
(14)with fs indi
ating the sampling frequen
y. If the dif-feren
e between the estimated frequen
y f̂v (ℓ) and thereferen
e tire frequen
y f (ℓ) is within a toleran
e range

∆, a foreign obje
t is 
lassi�ed, i.e.,
bv (ℓ) =

{

1 for ∣∣
∣
f̂v (ℓ)− f (ℓ)

∣

∣

∣
≤ ∆,

0 otherwise, (15)where bv (ℓ) = 1 denotes a positive foreign obje
t dete
-tion and else no obje
t dete
tion.Experimental SetupFor evaluation of the foreign obje
t dete
tion algo-rithms, re
ordings were done using mi
rophones and a
-
elerometers. The mi
rophones (MICs) and a

elerom-eters (ACCs) were installed at the wheel hub and thewheel guard of the rear right tire. To simulate foreignobje
ts, a s
rew was atta
hed to the pro�le of that tire.Re
ordings were done during driving. The sampling fre-quen
y was 96 kHz. The data were downsampled to44.1 kHz for testing. For ground-truth of the tire fre-quen
y f (ℓ), the antilo
k braking system (ABS) signalwas a

essed and re
orded as referen
e.Three di�erent metri
s were applied for evaluation.The frequen
y estimations f̂v (ℓ) are 
ompared to thereferen
e frequen
y f (ℓ) by either the mean squared er-ror (MSE) MSE =
1

L

L−1
∑

ℓ=0

(

f (ℓ)− f̂v (ℓ)
)2 (16)or the absolute value of the 
orrelation 
oe�
ient

|r| =

∣

∣

∣

∣

∣

∣

∣

∣

∑L−1

ℓ=0

(

f̂v (ℓ)− µf̂v

)

(f (ℓ)− µf )
√

∑L−1

ℓ=0

(

f̂v (ℓ)− µf̂v

)2

·
∑L−1

ℓ=0
(f (ℓ)− µf )

2

∣

∣

∣

∣

∣

∣

∣

∣

,(17)
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Figure 3: The mean squared error MSE and the 
orre-lation 
oe�
ient |r| between frequen
y estimation f̂ (ℓ)and referen
e f (ℓ) and the positive rate ρ for four di�er-ent sensor-position-
ombinations for the peak amplifyingmethods �auto regression� (bla
k bar, 
f. Eq. (4)) and,averaging (white bar, 
f. Eq. (3)). The system is basedon Y3 (k3, ℓ) (mod. STFT) with N 
orresponding to 3 s.where L denotes the number of all frames used for evalu-ation and µf̂v
and µf de�ne the mean of f̂v (ℓ) and f (ℓ),respe
tively. The positive rate ρ is measured by

ρ =
1

L

L−1
∑

ℓ=0

bv (ℓ). (18)ResultsIn the following subse
tions, the two approa
hes forthe peak amplifying, the four frequen
y analysis methodsand the blo
k length N are investigated.Peak AmplifyingTo amplify peaks in a time signal y′ (n, ℓ), two ap-proa
hes have been proposed: one averages frames overa period of 0.03 s (
f. Eq. (3)) and the other uses anauto regression fun
tion with N reg = 16 
oe�
ients (
f.Eq. (4)). The Results using the Y3 (k3, ℓ) approa
h fromEq. (12) are depi
ted in Figure 3. The results for themi
rophones are more a

urate than for the a

elerome-ters. The best results are a
hieved for the mi
rophone atthe hub. The auto regression approa
h yield lower MSEand higher |r| and ρ than the averaging approa
h. Thus,in the following, the auto regression approa
h is used forpeak amplifying.Frequen
y AnalysisFour methods Yv (kv, ℓ) with v = 1 . . . 4 to estimatethe frequen
y f̂v (ℓ) from an a
ousti
 signal are tested.The results are depi
ted in Figure 4. It 
an be seen thatthe 
omb �lterbank approa
h Y2 (k2, ℓ) fails in dete
tingobje
ts. The best results are a
hieved for the modulationmethods Y3 (k3, ℓ) and Y4 (k4, ℓ).
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Figure 4: The mean squared error MSE and the 
orre-lation 
oe�
ient |r| between frequen
y estimation f̂ (ℓ)and referen
e f (ℓ) and the positive rate ρ for fourdi�erent sensor-position-
ombinations for the frequen
yanalysis methods Y1 (k1, ℓ) (DFT), Y2 (k2, ℓ) (Comb),
Y3 (k3, ℓ) (mod. STFT) and Y4 (k4, ℓ) (mod. Mel). Theblo
k size N 
orresponds to 3 s.Blo
k SizeThe frequen
y estimation f̂v (ℓ) is pro
essed inblo
ks ℓ. The blo
k size N should be short on the onehand sin
e the 
ar velo
ity is not 
onstant over a longerperiod. On the other hand, long windows are needed tohave an adequate frequen
y resolution. If the resolutionwas low (
onsidering a frequen
y range between 0 Hz and20 Hz), i.e., few frequen
y bins kv existed, the 
han
elevel for mis
lassi�
ation would rise. Furthermore, thesmaller the window, the fewer turns of a tire fall into awindow. For example, for a 
ar velo
ity of 15 km/h, thatis equivalent to f ≈ 2 Hz, one turn of a tire is within a pe-riod of 0.5 s. Thus, maximally one ti
king sound is withina blo
k of 0.5 s duration that makes it quite di�
ult toget a 
orre
t frequen
y estimation for this window size.Hen
e, �ve blo
k sizes between 1 s and 5 s are tested.In Figure 5, the mean squared error MSE, the 
orrela-tion 
oe�
ient |r| and the positive rate ρ of the sensorswith 
ontinuously present foreign obje
t are plotted forthese blo
k sizes. The frequen
y estimation was based on
Y3 (k3, ℓ) and auto regression peak amplifying. It 
an beseen that longer blo
k sizes yield better results. However,there is a 
onvergen
e in a

ura
y, i.e., nearly no gain isa
hieved for longer blo
k sizes than 3 s.Con
lusionWe presented an algorithm to dete
t periodi
ally re-peating sounds from tires by a
ousti
 sensors. Two kindsof sensors where used at di�erent tire positions to re
orda
ousti
 data. We showed that mi
rophones work morea

urate than a

elerometers. Two approa
hes to am-plify peaks from the repeating ti
king sounds of obje
tswere tested. The auto-regression method resulted in bet-ter performan
e than the averaging approa
h. To esti-mate the frequen
y, four approa
hes were evaluated. The
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Figure 5: The mean squared error MSE and the 
orre-lation 
oe�
ient |r| between frequen
y estimation f̂ (ℓ)and referen
e f (ℓ) and the positive rate ρ for four di�er-ent sensor-position-
ombinations for the analysis methodbased on auto regression and Y3 (k3, ℓ) (mod. STFT). Theblo
k size N varied 
orresponding to 1 s up to 5 s (seegrey shades).modulation spe
trogram approa
h yielded highest perfor-man
e. The blo
k sizes were investigated and blo
ks with3 s durations a
hieved highest a

ura
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