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Introduction

Nowadays cars are equipped with various different sen-
sors, e.g., radar or ultrasonic sensors for distance mea-
suring and parking assistance, cameras for light-control
or lane departure alerting, traffic sign recognition etc.
Acoustic sensors find their way into cars mainly for au-
tomatic speech recognition (ASR) for in-car communica-
tion, entertainment and navigation systems [1]. However,
acoustical sensors are capable of recognizing many more
car-related events like sirens [2] and car horns [3], lane
departure, road or tire conditions, engine failures, bro-
ken or worn chassis parts, loose parts, broken tie rods,
broken/cracked exhaust, worn clutch etc.

In this paper, acoustically based detection of foreign
objects in tires is investigated. This application scenario
is important since objects in tires can cause punctures
and, thus, lead to accidents in the worst case. The al-
ready existing pressure sensors for tires installed at the
tires themselves can only detect an already existing crit-
ical air loss. However, microphones can detect the tire
damage before a significant loss of air pressure is mea-
surable. For this study, a sound database using acoustic
sensors at different car positions has been recorded in real
environments. Different algorithms to recognize objects
in tires will be compared in this paper.

Detection of Nails in Tires

If an object is stuck to the cap of a tire, e.g., a screw, it
will cause a periodically repeating ticking sound with the
frequency of the spinning tire. Thus, we consider an ap-
proach that is based on the comparison of the frequency
of the acoustic signal and the tire frequency to detect a
foreign object. A block diagram of the frequency estima-
tion based on acoustical signals is depicted in Figure 1.

Therefore, the sampled signal s (n) is processed block-
wise, i.e.,

y(n,0) = s (n+ L ng)wy (n) (1)

with n denoting the sampling index, ¢ the block index,
ns the sample shift and wi¢* (n) a rectangular window
of length N. The influence of N will be investigated
in detail. A signal block of 3 s duration is depicted in
Figure 2, upper panel.

Since traffic and environmental noises often have much
energy at low frequencies, a pre-emphasis filter is applied,
yielding

y (n,0) =y (n, ) =v-y(n—1.0) (2)

where v is a factor which controls the relation between
high and low frequency energies. The pre-emphasized
signal is shown in Figure 2, middle panel.
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Figure 1: Overview of the frequency estimation proce-
dure. The signal y (k,¢) is filtered by a pre-emphasis
filter. A peak amplifying method is applied that is either
based on auto regression or short-time averaging. Noise
reduction is applied to the absolute value of the result.
A frequency analysis is conducted afterwards. Four ap-
proaches have been tested based on DFT, Comb-filtering
(Comb), modulation spectrogram (mod. STFT), modu-
lation Mel-spectrogram (mod. Mel). The frequency with
maximal energy f () is the outcome of the estimation
procedure.

The ticking sound from objects in a moving tire results
in periodical peaks in the time representation of the sig-
nal. A mechanism to amplify peaks and inhibit other
signal components is applied. Two approaches have been
tested. For the first approach, the signal 3’ (n,¢) is av-
eraged for short windows of length N®' and subtracted
from ¢’ (n,?), i.e.,
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§&) (n,0) =y (n,0) —

y (n+1,0). (3)

The other approach utilizes the auto regression func-
tion yielding

e
558 (n, 0) = ¢/ (n, ) ayy' (n—i,0)  (4)
=0

where a; denotes regression coefficients and N*°8 the re-
gression dimensionality. The resulting signal is depicted
in Figure 2, lower panel. The noise contained in the ab-
solute value of this resulting signal | (n, £)| is reduced by
a threshold, i.e.,

g(n7€):{|y(n,€)| for g (n,0)| > o~ oy + pue, 5

0 otherwise,

with py and oy denoting the mean and standard deviation
of the signal at block ¢, respectively.
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Figure 2: Pre-processing of the signal. In the upper
panel, a signal block y (n, £) of 3 s duration is shown. The
pre-emphasized signal y' (n, ¢) is depicted in the middle
panel. The signal |gj(”’g) (n,ﬁ)} after applying the auto
regression method is depicted in gray in the lower panel.
The signal components above the threshold (horizontal,
dashed line), that are further processed, are marked in
black.

After pre-processing, the frequency modulations are
analyzed. The first approach is based on the DFT

?j (kl,g) _ Z (TL 6) Hamm (n 4 0. ns)e*j27rk1n/N
(6)
with wiam® (n) denoting a Hamming window of length
N and k1 =0...N —1 indexing the frequency bins. The

dB-scaled spectrum is used, i.e,
Y1 (k1 0) = 10logyg (7 (k1,0)) (7)

The second approach applies a comb filterbank to the
spectrogram of Eq. (6). A feedback comb filter is defined
in the frequency domain as

. —1
Hcomb (klu kz) _ (1 _ Be—]2ﬂ'k1/k2) , (8)

where k5 is indexing the comb frequency and g is a gain
factor. Hence, the spectrum using a comb filter bank is
defined by

Y (ka, €) = 101og,, <Z H™ (ky, ka)ij (o, 6)) - (9)

k1
The third approach computes a spectrogram for each
frame /, i.e.,

oo

Y (K1) = >

n=—oo

(n f) Hamm (n +1- ls)eijTrk’n/L'

(10)
where [ is a subframe index, L is the number of samples
per subframe (= 25 ms) and [ the hop size (= 10 ms).
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The modulation spectrogram is obtained by applying a
Fourier transform to the subframes [

Do V(KL il (e,

l=—00

Y" (K k3, 0) =

(11)
The resulting amplitude modulation spectrogram is
summed over the frequency bands, i.e.,

2
V3 (ks, £) = 10log,, <Z Yy (k’,k3,€)> . (12)

kl
The fourth approach applies a Mel-filterbank
H™e (ky, k') to the spectrum Y’ (K, 1,¢), i.e.,

Y (ka, 1, 0) = ZHmel ka, K)Y' (K, 1,0),  (13)

where k4 is indexing the Mel-bins. The further steps for
the Mel approach are equal to that of Y3 (ks, {), i.e., ap-
plying Eq. (11) and Eq. (12), leading to Yy (k4, £). All ap-
proaches lead to a spectral power density Y, (k,,¢) with
K, frequency bins per approach v. Thus, the frequency
estimation is given by

s
K,

v

fo (0) = argmaX{Y (Ky, 0)} - (14)

with fs indicating the sampling frequency. If the dif-
ference between the estimated frequency f, (¢) and the
reference tire frequency f (¢) is within a tolerance range
A, a foreign object is classified, i.e.,

W)_{l for |7, (0~ 7 ()] <A,

0 otherwise,

(15)

where b, (£) = 1 denotes a positive foreign object detec-
tion and else no object detection.

Experimental Setup

For evaluation of the foreign object detection algo-
rithms, recordings were done using microphones and ac-
celerometers. The microphones (MICs) and accelerom-
eters (ACCs) were installed at the wheel hub and the
wheel guard of the rear right tire. To simulate foreign
objects, a screw was attached to the profile of that tire.
Recordings were done during driving. The sampling fre-
quency was 96 kHz. The data were downsampled to
44.1 kHz for testing. For ground-truth of the tire fre-
quency f (¢), the antilock braking system (ABS) signal
was accessed and recorded as reference.

Three different metrics were applied for evaluation.
The frequency estimations fv (¢) are compared to the
reference frequency f (¢) by either the mean squared er-
ror (MSE)

1 L—1 ) 2
MSE = - g (f (0) — e)) (16)

or the absolute value of the correlation coefficient
L 1/( 2
5 (fv (0= nz,) (£ (0) = p)

\/E Foll) =nz) SO -
(17)
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Figure 3: The mean squared error MSE and the corre-
lation coefficient |r| between frequency estimation f (¢)
and reference f (¢) and the positive rate p for four differ-
ent sensor-position-combinations for the peak amplifying
methods “auto regression” (black bar, cf. Eq. (4)) and,
averaging (white bar, cf. Eq. (3)). The system is based
on Y3 (ks,¢) (mod. STFT) with N corresponding to 3 s.

where £ denotes the number of all frames used for evalu-
ation and 117 and juy define the mean of f, (¢) and f (£),
respectively. The positive rate p is measured by

=73 bul0). (18)

Results

In the following subsections, the two approaches for
the peak amplifying, the four frequency analysis methods
and the block length NV are investigated.

Peak Amplifying

To amplify peaks in a time signal 3’ (n,£), two ap-
proaches have been proposed: one averages frames over
a period of 0.03 s (cf. Eq. (3)) and the other uses an
auto regression function with N™& = 16 coefficients (cf.
Eq. (4)). The Results using the Y3 (ks, £) approach from
Eq. (12) are depicted in Figure 3. The results for the
microphones are more accurate than for the accelerome-
ters. The best results are achieved for the microphone at
the hub. The auto regression approach yield lower MSE
and higher |r| and p than the averaging approach. Thus,
in the following, the auto regression approach is used for
peak amplifying.

Frequency Analysis

Four methods Y, (ky,¢) with v = 1...4 to estimate
the frequency f, (¢) from an acoustic signal are tested.
The results are depicted in Figure 4. It can be seen that
the comb filterbank approach Y5 (kq, ¢) fails in detecting
objects. The best results are achieved for the modulation
methods Y3 (ks, £) and Yy (ky, £).
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Figure 4: The mean squared error MSE and the corre-
lation coefficient |r| between frequency estimation f (¢)
and reference f(¢) and the positive rate p for four
different sensor-position-combinations for the frequency
analysis methods Y7 (k1,¢) (DFT), Ys (k2,¢) (Comb),
Y5 (ks,¢) (mod. STFT) and Yy (k4,¢) (mod. Mel). The
block size N corresponds to 3 s.

Block Size

The frequency estimation f,(¢) is processed in
blocks ¢. The block size N should be short on the one
hand since the car velocity is not constant over a longer
period. On the other hand, long windows are needed to
have an adequate frequency resolution. If the resolution
was low (considering a frequency range between 0 Hz and
20 Hz), i.e., few frequency bins k, existed, the chance
level for misclassification would rise. Furthermore, the
smaller the window, the fewer turns of a tire fall into a
window. For example, for a car velocity of 15 km/h, that
is equivalent to f ~ 2 Hz, one turn of a tire is within a pe-
riod of 0.5 s. Thus, maximally one ticking sound is within
a block of 0.5 s duration that makes it quite difficult to
get a correct frequency estimation for this window size.
Hence, five block sizes between 1 s and 5 s are tested.
In Figure 5, the mean squared error MSE, the correla-
tion coefficient |r| and the positive rate p of the sensors
with continuously present foreign object are plotted for
these block sizes. The frequency estimation was based on
Y3 (k3,¢) and auto regression peak amplifying. It can be
seen that longer block sizes yield better results. However,
there is a convergence in accuracy, i.e., nearly no gain is
achieved for longer block sizes than 3 s.

Conclusion

We presented an algorithm to detect periodically re-
peating sounds from tires by acoustic sensors. Two kinds
of sensors where used at different tire positions to record
acoustic data. We showed that microphones work more
accurate than accelerometers. Two approaches to am-
plify peaks from the repeating ticking sounds of objects
were tested. The auto-regression method resulted in bet-
ter performance than the averaging approach. To esti-
mate the frequency, four approaches were evaluated. The
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Figure 5: The mean squared error MSE and the corre-
lation coefficient |r| between frequency estimation f (¢)
and reference f (¢) and the positive rate p for four differ-
ent sensor-position-combinations for the analysis method
based on auto regression and Y3 (k3, ¢) (mod. STFT). The
block size N varied corresponding to 1 s up to 5 s (see
grey shades).

modulation spectrogram approach yielded highest perfor-
mance. The block sizes were investigated and blocks with
3 s durations achieved highest accuracies.
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