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Introduction

In many studies conducted to monitor the health sit-
uation of kindergarten child care workers in Germany,
the high noise level in the facilities has been pointed
out by approximately 70% of the workers as one of the
most stressful factors. One factor contributing to the
stress is considerable background noise in kindergartens,
many important events such as calls for help of chil-
dren or colleagues might be unheard at their first utter-
ance. This contribution presents results of a study con-
ducted in a real kindergarten for which machine-learning
approaches were tested to detect and classify acoustic
events in typical background noises. For the training
of applied approaches daily kindergarten noise has been
recorded. The goal of this study is to develop an auto-
matic acoustic event detection (AED) system to consider-
ably reduce the number of unrecognized, desired events
important for child-care workers. AED is increasingly
used in many fields of application, e.g. for surveillance
and security issues [1-3] or in the field of ambient assisted
living (AAL) [4, 5]. In past AED challenges, i.e., the
CLEAR’07 (“classification of events, activities and re-
lationships”) challenge [6] that was part of the CHIL
project [7] and the D-CASE (“detection and classifica-
tion of acoustic scenes and events”) challenge [8], detect-
ing acoustic events in a meeting room and office scenarios
has been addressed. For these challenges, the proposed
AED approaches were mainly based on Mel-frequency
cepstral coeflicient (MFCC) features in conjunction with
hidden Markov models (HMMs) |9, 10].

In this contribution, two different approaches based
on HMMs in combination with MFCCs are applied. The
commonly used maximum likelihood approach just al-
lows for one event detection per time section, whereas
in real scenarios like kindergartens multiple events occur
simultaneously and overlapping. Thus, we propose ap-
plying a set of binary classification systems by using an
universal background model (UBM) that is compared to
each event model resulting in binary decisions.

Classification systems

Commonly, recognition with HMMs is done by com-
paring the likelihoods of different event models. The
model with highest likelihood is assumed to describe a
time section, i.e.,

¢ = argmaxp (x |°). (1)

where \¢ is the HMM of event class ¢ = 1...C with C
being the total number of event classes. x denotes the
feature vectors for a time section and ¢ is the event with
maximum likelihood. This multiclass classification sys-

tem yields one detection label per time section. Since
in real world scenarios, multiple events can occur simul-
taneously and overlapping, we propose the use of a set
of binary classification systems. Therefore, an UBM is
trained on all training data. Each event HMM \° is com-
pared to the UBM AUBM e

e={clp(xIx?) >p (x|A""™M) }. (2)

Hence, the role of the UBM is to detect time sections that
do not belong to a model A°. Thus, multiple detections
¢ up to C' labels per time section are possible.

Experimental Setup

The evaluation is done using a database of real-world
recordings from a day care center for children and a
kindergarten. The data were split into five disjoint sets
to perform a five-fold cross-validation . HMM recognizers
were trained to model the events, silence and the UBM.
The common multiclass classification system based on
Eq. (1) and the binary classification system from Eq. (2)
were tested. Details are presented in the following sub-
sections.

Database

The database used for training and evaluation was
recorded in a day care center for children between 0 and
3 years and in a kindergarten for children between 3 and
6 years. In both facilities, five rooms and one hallway
were equipped with microphones, i.e., altogether twelve
microphones were used. The data collected comprised
2840 minutes of recordings from daily activities in those
facilities. The data were annotated by hand. Since the
occurring events can be labeled very detailed and dif-
ferently leading to a huge amount of event classes with
few samples, we decided to use the labeling approach
suggested in [11] to limit the number of event classes. In
this report, a labeling list is proposed that was developed
to label acoustic data in video clips by few, meaningful
labels. These labels are supposed to present smallest
components sound data can be composed of. In analogy
to phonemes for words, they are called noisemes. A list
is given in Table 1. The data were split into five disjoint
sets to conduct a five-fold cross-validation.

Recognizer

As input for HMMs, MFCCs [12] are extracted from
the time signal. For the back-end classifier, the Hid-
den Markov Toolkit (HTK) [12] is applied to build up an
HMM recognition network with a task grammar. HTK
provides a speech recognition network of three levels:
word level, model level and HMM level. In this contribu-
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Table 1: List of noisemes for labeling from [11]

Broad Noiseme Sounds like ...
Anim Animal Not identifiable animal
Anim_... Identified animal, e.g.
anim_ bird
Cry Crying
Human noise  Vocal noise, e.g. cough, sneeze,
Human -
noise s throat
- - Laugh Laughter
Scream Screaming
Child Child/baby coos; animal coos
Mumble Non-intelligible, single voice
Speech s Speech Intelligible speech English
Speech _ne Intelligible speech not English
Singing Singing Ouly voice; a capella
Human m Cheer Inl:,elllglble speech, multiple
- voices
Crowd Non-intelligible, multiple
voices

Music_sing

Music with singing

Music Music Only music
Knock Hits woods, cardboard, dry
wall
Noise Thud Hits floor, dirt, carpet,
__pulse damped
Clap Hands, gun, shot-like, explo-
sion
Click Quiet, mechanical click
Bang Hits metal, glass, tone-ish
Beep Very short beeps, computer
Clatter Bangs, knocks, pulses, irregu-
lar
Noise Rustle Scratching, hiss, rustling, ir-
_ongoing regular
Scratch Short friction segments, regu-
lar
Hammer Bangs, knocks, pulses, regular
Washboard Fast pulses with rubbing
sounds, friction, regular
Applause Very fast claps comb, with fric-
tion
Engine quiet Rattle, sewing machine, video
Engine . . camera . . .
Engine light High-freq. machine noise, drill-
like
Power_tool Mid.-freq. machine noise, race
car
Engine heavy  Low-freq. machine noise,
truck, tractor
Phone Classical telephone ring, ring-
. ing
Ng(l)sr?e Whistle High-freq. tone
- Squeak Tire squeak, friction squeak,
high freq.
Tone Steady tone, horn, alarm
Siren Oscillating sound waves
Noise Water Dubbing, splashing
_ backgr Micro blow Wind or breath hits micro-
_nat phone
Wind Guts, flag clatter, pulses,
scratch
Noise Radio Radio/TV in background
_ backgr White noise Fuzzy signal, air cond., water-
fall, hum
Other Other creak Open for unseen noises

Figure 1: Schematic of a left-to-right HMM with three
states that is used to model events.

tion, events are treated as words. The model level, that
is used in speech recognition to represent sub-words like
phonemes, is not employed here. Thus, the whole recog-
nizer can be interpreted as a two-layer HMM. The first
layer is a fully connected HMM in which each state is an
event, i.e., each event can be accessed at every time. The
observations of these event states are themselves HMMs
that are trained independently using the extracted fea-
tures. These events are modeled by left-to-right HMMs
with three emitting states (cf. Figure 1) that was pro-
posed in [13] as well. To estimate time regions in a signal
in which no active event is present, an extra silence class
is modeled. The UBM is trained using all data.

The number of Gaussian mixtures M for the event
classes are optimized on the fifth (testing) fold.

To estimate the time regions of events in a signal,
Viterbi decoding [12] is used. Since the output can be
highly fragmented, i.e., several insertion and deletion er-
rors may occur, a fixed logarithmic probability insertion
penalty p is added to every event state transition [12].
Thus, the probability to remain in an event/UBM/ silence
state can be increased and a less scattered output is
achieved. This parameter is also optimized on the fifth
fold.

For the multiclass classification system based on
Eq. (1), M and p are equal for each event class. For
the binary classification system based on Eq. (2), this is
done individually for each binary decision.

Metrics

As evaluation metrics, the F-Score and the acoustic event
error rate (AEER) are used based on frame-wise, event
onset (tolerance 100 ms) and event on-/offset (onset tol-
erance 100 ms, offset tolerance 50% of event length) mea-
sure [8]. The F-Score

_2.P-R

F=%Txr ®)

represents the relation between the precision

H
P=— 4
M )
and the recall
H
R=—
=3 (5)

with H denoting the number of correct hits, M the num-
ber of estimated events and N the number of reference
events.
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Figure 2: Mean (bars) and standard deviations (whiskers) of the F-Score F' (left panel) and AEER (right panel) from
the five-fold cross-validation for the multiclass (cf. Eq.(1)) (black) and the binary (cf. Eq.(2)) (white) classification
system based on frame-wise, event onset and event on-/offset measure.

The AEER is the sum of insertions I, deletions D
and substitutions S relative to the number of reference
events N, i.e.,

I+D+S

AEER = ~ . (6)
Results

The evaluation is conducted based on a five-fold cross-
validation. In Figure 2, the results in terms of mean and
standard deviation for the F-Score (left panel) and the
AEER (right panel) are depicted. It can be seen that
the F-Score based on the onset and on-/offset measure
is higher for the binary classification system. For the
frame based measure, the multiclass classification system
is more accurate. For the AEER, the multiclass classifica-
tion system leads to fewer errors than the binary system
for every measured condition. Since the AEER, comprises
insertion errors, the AEER is not limited to 100% error.

Conclusion

In this contribution, we investigated AED for noisy
kindergarten environments . For this, a database con-
sisting of real recordings conducted in a day care cen-
ter for children and a kindergarten was recorded. Since
the annotation of the events within the database is com-
plex, we proposed the use of a defined list of noisemes.
Two HMM based classification systems were tested. The
multiclass classification system is based on the commonly
used maximum likelihood approach yielding one label per
time section. The other proposed binary classification
system applies a set of binary decisions between a model
and a UBM. Thus, it is capable of detecting multiple
events per time section.

The evaluation of these systems showed slightly better
performance for the binary classification system regard-
ing the F-Score but worse based on AEER than the mul-
ticlass classification system. However, the performances
of both systems are still low. On the one hand, this
results from the highly complex scenario with overlap-
ping sounds. On the other hand, the labeling/evaluation

method may not be optimal for our application scenario.
For example, events like “clatter” and “knock” just differ
in the number of times they occur. Hence, if the classifi-
cation system outputs multiple times “knock” instead of
“clatter”, this leads to higher error rates. Furthermore,
errors can occur from mixing up very similar classes that
are not useful to discriminate against, e.g., “speech” and
“mumble”. All these effects can cover the actual perfor-
mance difference between the two proposed classification
systems and reduce the overall accuracy. Thus, labeling
is crucial and of high importance. This will be further
evaluated in the future considering this awareness.
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