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Introduction

Today’s premium cars are typically equipped with a
large number of loudspeakers and microphones to pro-
vide high-quality entertainment, hands-free communica-
tion via cellphones, and hands-free access to the ap-
plications running on the car’s head unit relying on a
human/machine voice dialog. Especially for multichan-
nel sound rendering, this requires multichannel Acous-
tic Echo Cancellation (AEC) systems. For lab environ-
ments, the concept of wave-domain AEC [1] proved to
be an efficient solution for planar loudspeaker arrays by
performing the adaptive filtering in a spatial transform
domain. While acoustic systems typically show similarly
strong couplings between all loudspeakers and all micro-
phones, the wave-domain couplings between loudspeaker
modes and microphone modes decrease with increasing
difference between mode orders [1]. This prior knowl-
edge can be exploited for improved system identification
and reduced computational complexity by modeling only
a subset of couplings in the spatial transform domain.

In practice, many environments, such as automotive en-
vironments, impose hard constraints on the placement
of loudspeakers of the entertainment system, precluding
planar loudspeaker arrays. An alternative transform-
domain multichannel adaptive filtering approach which
does not require geometrical prior knowledge about
the transducer placement is the so-called source-domain
adaptive filtering [2], for which Singular Value Decom-
positions (SVDs) of cross-correlation matrices have to
be computed and tracked in a reliable way. A similar
effect is exploited by the spatial-region AEC described
in [3], where independent sources are extracted by beam-
formers and where transducers may be placed in an arbi-
trary but known way. An even more sophisticated mul-
tichannel AEC concept tailored to the actual character-
istics of the Loudspeaker-Enclosure-Microphone System
(LEMS) requires the adaptive estimation of the system’s
eigenspace to obtain a spatial transform before adapting
what is considered the actual filter coefficients in the
transform domain [4].

However, as these algorithms have only been simulated
with a relatively low number of channels and do not ex-
ploit prior knowledge about the transducer distributions
sufficiently, we focus on Wave-Domain Adaptive Filter-
ing (WDAF) and investigate the consequences of such
irregular loudspeaker arrays on wave-domain transforms
according to [5].
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Wave-Domain Transforms Based on Cir-
cular Harmonics

The core idea of wave-domain analysis emerges from the
orthogonal sets of basis functions resulting from solv-
ing the acoustic wave equation in a particular coordi-
nate system. Employing them, the sound field is de-
composed into components which are elementary solu-
tions of the acoustic wave equation, so-called modes,
and is processed in the decomposed domain. The spher-
ical, cylindrical, and circular decompositions [6, 7] are
of particular interest, because the decompositions result
in countably infinitely many decomposition coefficients
also under free-field assumptions and thereby allow for
the approximation of the wave field by a few coefficients
only—a representation suitable for digital hardware. Ini-
tially, wave-domain processing has been proposed in [8]
for AEC. Wave-domain transforms based on circular har-
monics have been introduced in [9] for active listening
room compensation and have been shown to provide ap-
proximate eigen functions of the acoustic transfer func-
tion matrices—also in reverberant environments. Since
then, the concept of WDAF based on circular harmon-
ics has been extended [1, 5] and employed for reduced-
complexity AEC [1] as well as Listening Room Equaliza-
tion (LRE) [10] assuming Uniform Circular Concentric
Arrays (UCCAs). Contrasting the spatial transform, de-
noted as wave domain, the original domain will be de-
noted as transducer domain from now on.

Notations and Prerequisites

In the following, coordinate vectors are indicated by an
arrow, e.g. ~x, and ~xT denotes transposition of ~x. A
point in space is equivalently described by the triples
~x = [x, y, z]T in Cartesian coordinates, [̺, ϕ, z]T in cylin-

drical coordinates, and [r, ϕ, ϑ]T in spherical coordi-
nates. Therein, ϕ is the azimuthal angle in the x-y-plane,
ϑ is the elevation angle w.r.t. the x-y-plane, and ̺ and
r are cylindrical and spherical radial coordinates of ~x,
respectively.

Furthermore, let ~xL,l and ~xM,m denote the coordinates

of the lth loudspeaker and the mth microphone of an
NL-element loudspeaker array and an NM-element mi-
crophone array, respectively. Besides, let t be time, f
be a continuous-time frequency, and ω = 2πf be the
corresponding angular frequency. Additionally, assume
that the microphones are in a plane parallel to the x-
y-plane and the microphones are centered around the
z-axis with uniform angular spacing 2π/NM and radius
RM. Each of the loudspeakers emits a real-valued signal
with a Fourier transform PL(l, ω) and each microphone
captures the signal PM(m,ω) = P (~xM,m, ω). The speed
of sound is denoted as cair and the wave-number of a
monofrequent wave is written as k(ω).
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Circular Harmonics

For uniform circular apertures, transforms based on a
circular harmonics decomposition [6] seem intuitive, as
they are the orthogonal set of basis functions resulting
from the solution of the acoustic wave equation in cylin-
drical coordinates. This is also justified by the findings
in [9], where the transfer function matrices’ generalized
SVDs lead to a spatial basis strongly resembling cir-
cular harmonics. A spatially sampled continuous-time
frequency-domain signal g(̺, ϕi, ω), sampled equidis-
tantly at N points with angles ϕi =

2π
N i at radius ̺ = ̺0,

where i = 0, . . . , N − 1 is the index of the sample point,
has the circular harmonics decomposition

g̊
(

i̊, ω
)

=
1

N B̊i(̺0k(ω))

N−1∑

i=0

g(̺0, ϕi, ω)e
− 2π

N
j̊ii, (1)

where i̊ ∈ Z is termed mode index. The term B̊i (̺0k(ω))
is known as baffle function [11] and depends on the
boundary conditions at the radius ̺0, where the sound
field is sampled. In the free-field case, it results in

B̊i (̺0k(ω)) = J̊i (̺0k(ω)) , (2)

where J̊i(x) denotes the Bessel function of the first kind

and order i̊ [11]. Comparing Eq. (1) to a Discrete Fourier

Transform (DFT) reveals that g̊(̊i, ω) is N -periodic in i̊:
only N non-redundant modes can be determined and
mode i̊ is identical to mode i̊+N ∀̊i.

The Microphone Array Signal Transform

The microphone signals of a uniform circular array can
straight-forwardly be transformed by a cylindrical har-
monics decomposition of the wave field spatially sam-
pled by the microphones [5]. These forward and back-
ward transforms can be represented as linear Multiple-
Input/Multiple-Output (MIMO) systems with the trans-
fer functions

T f
2(m̊,m, ω) =

1

NMBm̊ (k(ω)RM)
e−jm̊ϕM,m (3)

T b
2 (m, m̊, ω) = Bm̊ (k(ω)RM) · ejm̊ϕM,m (4)

between microphone m ∈ 0, 1, . . . , NM − 1 and micro-
phone mode m̊ ∈ Z, where ϕM,m = 2π

NM
m denotes

the azimuthal coordinate of the mth microphone and
where the superscripts “f” and “b” denote “forward”
and “backward” transform, respectively. For a discrete-
time implementation, the normalization to Bm̊ can also
be neglected, which shifts its contribution into the wave-
domain LEMS [5].

2D Model Loudspeaker Array Signal
Transform

For the loudspeaker signal transform in [5], the NL

loudspeakers are considered to form a Uniform Cir-
cular Array (UCA) with the lth speaker located at
[̺L,l, ϕL,l, zL,l] = [RL,

2π
NL

l, 0] (loudspeakers and micro-

phones are arranged as UCCAs).

In this case, the loudspeakers’ sound field in the vicinity
of the microphone array is approximated at NM,v = NL

points (denoted here as virtual microphone positions
~xM,v) and this approximated sound field PM,v(mv, ω) is
transformed by a circular harmonics decomposition. In

particular, loudspeakers are considered as point sources
to describe the propagation of their signals to the center
of the microphone array at ~xM,cent = ~0 and the propa-
gation from the array center to the virtual microphones
is modeled by a plane wave approximation. This yields

PM,v(mv, ω) :=

NL−1∑

l=0

PL(l, ω)G(~xM,cent | ~xL,l, ω)

·ejk(ω)RM cos(ϕM,v,mv
−ϕL,l)

(5)

with the free-field Green’s function [12]

G(~xM,cent | ~xL,l, ω) of the lth loudspeaker, evalu-
ated for the microphone array center, and the azimuthal
angle ϕM,v,mv

of the mth
v virtual microphone position.

Formulating the circular harmonics decomposition
for Eq. (5), and exploiting the Jacobi-Anger iden-
tity [13] leads to a wave-domain representation of the
loudspeaker signals as

P̃L (̊l, ω) :=

NL−1∑

l=0

e−jk(ω)̺L,l

̺L,l

PL(l, ω)j
l̊e−j̊lϕL,l , (6)

where l̊ is the loudspeaker mode. From this represen-
tation, the loudspeaker signals can be reconstructed by

PL(l, ω) =
̺L,l · e

jk(ω)

(

̺L,l−max
l
{̺L,l}

)

NL

·

NL−1∑

l̊=0

P̃L(̊l, ω)j
−̊lej̊lϕL,l ,

(7)

up to a delay max
l

{
̺L,l

}
, which has been introduced

to ensure causality [5]. These forward and backward
transforms can be represented as MIMO systems with
the respective transfer functions

T f,2D
1 (̊l, l, ω) = jl̊

e−jk(ω)̺L,l

̺L,l

e−j̊lϕL,l (8)

T b,2D
1 (l, l̊, ω) =

̺L,l · e
jk(ω)

(

̺L,l−max
l
{̺L,l}

)

NL
j−̊lej̊lϕL,l .

(9)

3D Model Loudspeaker Array Signal
Transform

Different from [5], three-dimensional loudspeaker arrays
will be considered in the following. This means that
each loudspeaker may appear under an individual ele-
vation angle ϑL,l with respect to the microphone array
center. Taking this into account when describing the
virtual microphones, Eq. (5) changes to

PM,v(mv, ω) =

NL−1∑

l=0

PL(l, ω)G(~xM,cent | ~xL,l, ω)

·ejkM(ω,l)RM cos(ϕ−ϕL,l)

(10)

with rl being the lth loudspeaker’s radial coordinate in
spherical coordinates and with

kM(ω, l) = ω
vp(l)

= cos (ϑL,l)
ω
cair

(11)
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being the loudspeaker’s effective wave number in the
microphone-array plane at the microphone array cen-
ter. Performing a circular harmonics decomposition of
Eq. (10) results in the wave-domain loudspeaker repre-
sentation

P̃
(3D)
L (̊l, ω) :=

NL−1∑

l=0

PL(l, ω)

·
J

l̊

(
k(ω)RM·cosϑL,l

)

J
l̊

(
k(ω)RM

)

︸ ︷︷ ︸

depending on

loudspeaker

elevation, mode, and

frequency

·
e−jk(ω)rL,l

rL,l
︸ ︷︷ ︸

mode-

independent

· jl̊e−j̊lϕL,l

︸ ︷︷ ︸

frequency-

independent

.
(12)

After approximating the ratio of Bessel functions in
Eq. (12) by one1, a simplified, 3D-modified loudspeaker
signal transform can be expressed as MIMO system with
the transfer functions

T f,3D
1 (̊l, l, ω) =

e−jk(ω)rL,l

rL,l
jl̊e−j̊lϕL,l (13)

T b,3D
1 (l, l̊, ω) =

rL,l · e
jk(ω)

(

rL,l−max
l
{̺L,l}

)

NL
j−̊lej̊lϕL,l .

(14)

This transform pair contains Eq. (8) and Eq. (9) as spe-
cial cases for zero elevation angles (rL,l = ̺L,l) of the
loudspeakers and, thereby, constitutes a generalization
of the 2D transform of the previous section. Note that
both the 2D model and the 3D model lead to transforms
as linear MIMO systems consisting of fractional delay
filters (mode-independent part) and the subsequent mix-
ing of the delayed signals (frequency-independent part).
Thereby, the discrete-time realizations of both transform
variants can be implemented with the same computa-
tional complexity.

Evaluation Method

In this section, we will evaluate the properties of the
LEMS in the transform domain. Therein, each of the

transfer functions H̃(m̊, l̊, ω) describes the coupling from

a loudspeaker mode l̊ to a microphone mode m̊. For such
a MIMO system, the energy couplings between modes m̊

and l̊ and can be defined as

Ecou(m̊, l̊) =

∫ ωmax

0

|H̃(m̊, l̊, ω)|2dω. (15)

A concentration of the coupling energy to a few coeffi-
cients allows for a good approximation of the respective
MIMO system by the subset of paths for strongly coupled
modes or exploitation of prior knowledge about typical
wave-domain systems during adaptive system identifica-
tion. For the wave-domain transforms based on circular
harmonics, a diagonal dominance with most prominent

couplings at l̊ = m̊ has been observed [1].

In order to quantify this compactness, consider the en-
ergy compaction measure

Ecom(ND) = 10 log10

∑

m̊

∑m̊+⌊ND/2⌋

l̊=m̊−⌊ND/2⌋
Ecou(m̊, l̊)

∑

m̊

∑

l̊ Ecou(m̊, l̊)
dB,

(16)

1As for the microphone array transform, this allows for a more
efficient discrete-time implementation.

where summation without any limits means summa-
tion over all non-redundant modes. This measure cor-
responds to the logarithmic ratio between the coupling
energy of the subset of the ND diagonals centered around

m̊ = l̊ to the coupling energy of the complete system2.
The energy-compaction measure increases monotonically
with increasing ND towards Ecom(NL) = 0dB. Ideally,
Ecom(ND) = 0 dB for ND = 1, which means that each
microphone mode m̊ is determined only by the corre-

sponding loudspeaker mode l̊. In this case, the wave-
domain system could be modeled by NM filters instead
of NMNL filters in the transducer domain.

Evaluation

The following analyses will be conducted in image-source
environments of varying orders Nim, where the rooms’
dimensions (1.6m× 2.9m base area) and the transducer
geometry is inspired by an automotive environment. Due
to the significant absorption of the ceiling, the floor, and
seats in an automobile, only four reflective vertical walls
are considered. A circular microphone array with NM =
48 elements and radius RM = 0.25m is placed in the
image-source room and is centered between virtual front
seats. The loudspeakers are placed symmetrically w.r.t.
the y-axis and with equidistant azimuthal spacing along
the contour of the room and, on the average, about 0.5m
below the microphones. This represents microphones in
the ceiling.

The remaining degrees of freedom are the reflection co-
efficient R commonly shared by the four walls and the
order Nim of the image-source model. The top view of

−0.5

0

0.5

−1.5 −1 −0.5 0 0.5 1

x

y

Figure 1: Top view on employed image source room with 48
loudspeakers (blue) and 48 microphones (red).

the complete setup is shown in Fig. 1. The energy com-
paction measure resulting for a 10th-order image-source
model with coefficients or R = 0.5 is depicted in Fig. 3
for the wave-domain system employing the 2D model
(cyan) and the 3D model (violet). Obviously, the 3D-
modified transform according to Equations (13) and (14)
leads to a much more compact wave-domain system, as
can be seen by the higher Ecom(ND) for low ND of the
violet curve (3D model). The next analysis, shown in
Fig. 3, focuses on the wave-domain system’s compact-
ness for varying the orders of the image-source model.
To this end, the energy compaction measure for ND = 5
diagonals is visualized for image-source model orders
0 ≤ Nim ≤ 10. As can be seen, the 3D model (violet)
consistently shows a better energy compaction, although

2When considering the i
th-strongest coupling instead of all cou-

plings of the i
th diagonal, this measure changes to the measure

“EC(i)” in [9].
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Figure 2: Energy compaction Ecom(ND) for different num-

bers of diagonals ND for a 10th-order image-source model with
reflection coefficients of R = 0.5.
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Figure 3: Energy compaction Ecom(ND) for ND = 5 diago-
nals for a varying order Nim of the image-source model with
reflection coefficients of R = 0.5.

best compaction is achieved for fewer reflections—which
reflects the fact that the wave-domain transforms have
been developed using free-field assumptions and there-
fore, show least couplings. Note that there is no per-
fect diagonalization for a 0th-order image-source model,
due to the approximations during the loudspeaker signal
transform. In case of reflections, each image source signal
(capturing a particular 1st− or higher-order reflection)
may impinge from a different direction than the original
source.

The same effect can be observed in Fig. 4 for a 10th-
order image-source environment while varying the re-
flection coefficient R in the interval [0.1, 0.9]. As can
be seen, the 3D model (violet) leads to a more diago-
nally dominant system than the 2D model (cyan). The
more dominant the direct sound (low R), the better the
energy compaction of both transforms and the stronger
the gain by the 3D model (violet).

To sum up, the 3D model increases the diagonal domi-
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Figure 4: Energy compaction Ecom(ND) for ND = 5 diago-
nals as a function of the reflection coefficient R of the walls.

nance of the wave-domain systems. The improved diag-
onal dominance stems from early parts of the impulse-
responses describing the LEMS. For high-order image
source models and highly reflective surfaces, diagonal
dominance generally reduces, but a gain by the 3D model
in terms of the energy compaction measure is still visible.

Conclusion

Wave-domain transforms based on circular harmonics
lead to the desired diagonal dominance of the wave-
domain systems also for three-dimensional loudspeaker
arrays. While the computational effort for a signal pro-
cessing application is not increased by the 3D-modified
transform presented in this manuscript, the diagonal
dominance of the wave-domain system can be improved
by employing the 3D-modified transform.
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