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Abstract
Effects of uncertainty in system parameters and impulse
loading characteristics on the response of single degree of
freedom (SDOF) systems are studied. The uncertain system
and loading parameters are represented by truncated
generalized polynomial (gPC) expansions. The non-
sampling stochastic simulation procedure based on the gPC
expansion technique is used for dynamic analysis of the
SDOF system duly considering the uncertainties. For a set of
Hermite’s collocation points, the system is analyzed to
obtain response time histories and shock spectra. The
statistical properties of response quantities are examined,
and effectiveness of the gPC expansion based simulation
procedureis compared with direct Monte Carlo (MC)
simulation. Herein, five different impulse loads, applied on
different SDOF systems, are considered. It is observed that
shock spectra of all the pulses are sensitive to the
uncertainties in region of time period close to pulse duration.
Among other response quantities, acceleration is influenced
more than the velocity and the displacement. The gPC
expansion based simulation technique is observed to be an
efficient alternative to computationally demanding MC
simulation for quantifying uncertainties. The probability
distributions for various response quantities, as obtained
through the gPC expansion based simulations, are well
compared with that obtained through direct MC simulations.

Introduction
In dynamics of structures, uncertainty is derived from a
number of sources including stiffness, estimation of loads,
deviations in dimensions, etc. Today, it is of paramount
importance to consider the effects of these uncertainties on
the output and perform probabilistic analysis of structures. A
number of schemes have been developed in the past few
decadesto quantify these effects. The underlying question in
quantifying uncertainty is the method to be used to
characterize the output of a physical process in which some
of the parameters are stochastic processes and the solution is
identified by its projection on certain basis functions chosen
appropriately [1]. Number of techniques have evolved to
model random processes and variables, such as Monte
Carlo(MC) simulation, Karhunen–Loéve (KL) expansion,
perturbation techniques, etc. One of the techniques to expand
the random process over Hilbert space is generalized
polynomial chaos, proposed in the first half of the last
century [2, 3]. Ghanem and Spanos [4] used this technique in
stochastic finite element analysis. Since then, gPC expansion

technique has been used in a wide range of engineering
applications.

It has been established by several researchers that gPC
expansion approach is superior interms of computational
efforts than MC simulations besides being faster converging
[5, 6]. Kundu and Adhikari [7] used a stochastic Krylov
subspace projection for investigating transient response of a
randomly parameterized structural dynamic system and used
gPC, with a deterministic impulse load. Manohar and
Ibrahim [8] presented a brief review on the consideration of
the parametric uncertainties in dynamic analysis
ofstructures. Li and Chen [9] proposed an approach for
dynamic responseanalysis of structures considering
parameteric uncertainty using MC simulation considering
uncertaintiesin structural parameters along with the random
input excitation. It is imperative to run a large number of
MC realizations for a reasonable accuracy in thesimulation,
which may be extremely expensive in terms of simulation
time. Baylot et al [10] studied uncertainties in blast loads
using convention statistical procedures. Borenstein and
Benaroya [11] performed sensitivity analysis of uncertain
blast loading parameters on a clamped aluminum plate using
MC simulations.

In the present work, single degree of freedom (SDOF)
systems with stochastic material behaviour have been
considered for studying the effects of uncertainties in various
parameters including excitation characteristics on response
quantities namely displacement, velocity and acceleration.
Also, the probability distributions of response for different
impulse loads are plotted and compared with those obtained
using MC simulation. Five different impulse loadsare
considered for illustration in the present study. The material
uncertainty is considered through stiffness of SDOF system,
and load uncertainty through impulse durationand its
amplitude. In order to study the sensitivity towards
uncertainties gPC approach has been used, expressing the
parameters with truncated expansions.

Stochastic Reponse Modeling with gPC
Considering the uncertainties in stiffness k, and in impulse
force f due to its uncertain amplitude F0 and duration td, the
equation of dynamic motion is written as

( , ) ( ) ( , ) ( , )k fmy t k y t f tξ ξ ξ ξ (1)

in which m is mass of the system; y(t,ξ) is the unknown
random displacement; ξk and ξf are the random variables
identifying the uncertainties in stiffness and impulse load,
respectively. It can be noted here that for impact loading,
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damping is ignored. Randomness in restoring force is
inherent in that of the stiffness along with structural
dimensions. The vector ξ represents all the random input
vectors, and is given by T[ ]k fξ ξ ξ . The impulse load is
expressed as

0 d0 d, ,f F tf t F t tξ ξ φ ξ (2)

where random variables
0Fξ and

dt
ξ represent the uncertainties

in amplitude and time duration of the impulse load and
constitute ξf. Expression of the function ϕ depends upon the
nature of the pulse. All the random variables belong to
random Hilbert spaces and yield random vector ξ in the
Hilbert space [12] and are assumed to be standard variables
to preserve orthogonality properties in generalized
polynomial expansion.

Uncertain structural parameter k, random loading f, and the
impulse time duration td are expressed as truncated gPC
expansion series [12,13] and have the following form,
respectively.
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stochastic basis functions for stiffness, impulse load
amplitude and its time duration, respectively. The random
output ,y t ξ of the system is further represented as
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in which
4nϒ is the deterministic coefficient vector and

4nψ ξ is the stochastic basis function for the response.

Substitution of Equations (2) to (4) into Equation (1) yields a
stochastic error function as given below.
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The problem at hand consists of determining unknown
deterministic coefficient vector

4nϒ which is achieved by

minimization of error function ( , )tε ξ to zero, which starts
from appropriately chosen stochastic basis functions. For
Gaussian processes, these are chosen to be Hermite
polynomials [12].
Determination of gPC Coefficients
In the present study, non-intrusive approach is used to
minimize the error function. In this technique, the residual
error is zero at specifically chosen collocation points over
the random space Ω. Thus, Equation (5) becomes,

5( , ) ( ) 0, for 1, 2, ...,j

n n n nt p d j Nε ξ δ ξ ρ ξ ξ (6)

whereδ is the delta function, j

np is the set of collocation

points chosen and ( )nρ ξ is probability distribution function
(PDF) of nth random variable ξn. The steps followed in the
simulation of the problem here involve representing
uncertain input parameters using truncated gPC expansions
over a set of standard random variables ξi, where i denotes
uncertain input parameter. The choice of generalized
polynomial expansion depends upon the type of distribution
of the random variable [12]. In the present study, the
uncertain parameters are assumed normally distributed, thus
any random process χi can be expressed by Nth order Hermite
polynomial.
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in which i refers to uncertain parameters k, F0 or td, and
ki

x
are the deterministic gPC coefficient which are obtained by
Galerkin projection scheme [13] for input parameters.
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where 2

k
H is the inner product in Hilbert space and given

by, 12 2

1k k
H L dξ ρ ξ ξ . The uncertain parameter iχ being

normally distributed is easily obtained in terms of its mean
value and standard deviation as i i iχ μ σ ξ , in which ξ is
the standard normal variable.

The response of the system is represented with gPC
expansion in a similar fashion and given as

0

, ( )
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r i i
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Y t y tξ ψ ξ (9)

where ( )iy t is the unknown deterministic coefficient which

varies with time, and iψ ξ is the stochastic basis function
as in Equation (4). The uncertain parameter in terms of
Hermite polynomial H is given as [13],
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whichis substituted for stochastic basis function ψ in the
equations above. As the number of terms in Equation (10)
grows very fast with the number of uncertain parameters and
the order of expansion, therefore, for optimum convergence
and computational effort, the number of terms is truncated.
To get the stochastic response of the system, the
deterministic response is first computed at a specified
number of collocation points. The minimum number of
collocation points should be at least equal to the number of
unknown coefficients in the gPC expansion series. These
points are the roots of one order higher Hermite polynomial
used,and zero. These points should be symmetrical about the
origin. For one-dimensional random vectorξ and expansion
up to third order, the response Y is written as
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0 0 1 1 2 2 3 3, ( ) ( ) ( ) ( )Y t y t H y t H y t H y t Hξ (11)

in which, H0 = 1, H1 = ξ, 2

2
1H ξ and 3

3
3H ξ ξ ;

and y(t)’s are the time-varying deterministic gPC
coefficients for each term in the expansion. The next step is
computation ofthese coefficients using a set of deterministic
outputs obtained at the selected collocation points. At every
instant of time in the response history, a large set of
simultaneous equations is solved using regression analysis
based on least square method. These coefficients are
substituted into the gPC expansions to obtain stochastic
response time histories.
Stochastic Modeling for Shock Spectra
A similar gPC model is prepared for studying the effects of
uncertainties on dynamic magnification factor (DMF) that is
taken as the ratio of random peak displacement of system to
deterministic static displacement. The dynamic
magnification factor Dn for nth SDOF system with time
period Tn subjected to a given excitation pulse is obtained as
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The gPC expansion series for dynamic magnification factor
Dn is given as

,
0
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Numerical Study
The above mentioned gPC formulation is used to analyse
twenty SDOF systems of time periods ranging from 0.1s to
2s;with stochastic properties and subjected to five different
types of random loads with time-histories as shown in
Figure 1. The variation has been considered Gaussian. Mean
values and standard deviations of each uncertain parameter
are given in Table 1. The deterministic model of the system
is solved for nine sets of uncertain input parameters. Time
duration of response history is kept 2 seconds with time
points after every 0.01s.

Figure 1: Impulse load definitions.

Table 1: Mean and standard deviation of the input parameters

Parameter Mean
(μ)

Standard
deviation (σ)

Percetange
Variation

td (s) 0.1 0.01 10
F0 (N) 2000 400 20
k (N/m) 10000 1000 10
Rt (N) 20000 2000 10

The mean shock spectra obtained from the gPC expansion
and compared with respective MC simulation and
deterministic estimations (Figures 2). It is observed that for

all the pulse loads, the mean stochastic shock spectra
converge towards deterministic shock spectra for higher-
time-period systems.

Figure 2: Comparison of mean shock spectra from gPC and MC
with deterministic shock spectra for rectangular and ramp pulses.

Figure 3: Variation of gPC coefficients for shock spectra for two-
leg triangular and ramp pulses.

The gPC coefficients for shock spectra ordinates for two-leg
triangular and ramp pulses are shown in Figure 3. The first
coefficient (y0) tracks the mean shock spectra, and higher
order coefficients (y1 and above) converge quite fast. The
mean gPC and MC responses of SDOF system with T = 0.1 s
are plotted in Figure 4, which are seen to be well in
agreement with the respective determinsitic responses. For
the same system, gPC coefficients are plotted for ramp pulse
as shown in Figure 5. It is clear that the coefficient y0
essentially tracks the mean responses and also dominates
compared to higher order coefficients (y1, y2 and y3). The
coefficient y1, which represents effect on variance of the
response quantities, propagates uncertainty in the systems
with lower time periods especially nearly equal to duration
of the pulse (for td/T ≈ 1). Third gPC coefficient (y2) shows
its effect on the systems with lower time period, as well as in
later time histories of the responses. The acceleration is seen
to be more sensitive towards uncertainties, followed by
velocity and displacement since the third gPC coefficient
(y2) also shows up in some cases. It is further observed that,
higher time period systems are less sensitive to uncertainties.
Very small values of higher order gPC coefficients in all the
cases indicate extent of convergence achieved with the gPC
expansion formulated.

Furthermore, probability distribution functions (PDF) of
DMFs at selected time periods are computed and compared
with those given by 30,000 MC simulations. For illustration,
Figure 6 shows PDF of velocity at selected time points for
rectangular pulse applied on the system with time period 2 s.
It is observed that the probability distributions of various
response quantities including DMFs are fairly close to those
obtained by MC simulations. It is observed that maximum
probability densities of DMFs move closer to deterministic
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DMFs for higher time period systems (for td/T<<1).The
extent of occurrence of any response quantity is more or less
symmetrical about deterministic values, and similar to that
given by MC simulations.

Figure 4: Mean gPC and MC responses of system with T = 0.1 s to
rectangular pulse load.

Figure 5:Variation of gPC coefficients of response of T = 0.1 s
system for ramp pulse

Figure 6: Probability distribution of velocity at selected time points
for rectangular pulse for the three cases.

Conclusions
From the study presented here, following conclusions are
drawn.
1. The gPC expansion qualifies to be a reasonably good

substitute for MC simulations to quantify uncertainties
and converges to an acceptable extent, for shock spectra
as well as for other response quantities.

2. Shock spectra of impulse excitations are highly stochastic
in the early region of time periods, especially when time
period of the system is close to pulse duration.

3. Maximum probability density of response quantities
including DMF, occurs close to deterministic values,
more so for higher time periods.

4. Influence of uncertainty on response is more while
impulse is acting. This is significant for the systems with
time period equal to pulse duration.

5. Higher the order of response quantity more is the effect
of uncertainties in input parameters. Accelerations are
seen to be more sensitive towards randomness in inputs.
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