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Abstract
Luthiers routinely tune ring- and X-modes of top and back
plates (pre-assembly) as well as the bridge (post-assembly,
with sound post), and usually they consider these two as
being the most important determiners of sound. Plate modes
relate to plate thickness and therefore to the critical
frequency fcrit for radiation. Empirical data on relations
between air modes, non-assembled plate modes, and body
modes encouraged parametric modelling of a violin
radiativity profile RDF(f) using only the two parameters fcrit
and frock (bridge) to capture general sound trends [Bissinger,
JASA, 2012]. RDF(f) is transformed to a minimal-phase non-
ringing FIR filter to auralize related sound trends while
varying these two parameters. Auralizations were created by
applying this filter to a bowed-string driving force measured
at the bridge of a solid-body violin.

Introduction into the underlying model
How does thinning the violin’s top and back plate
thicknesses affect its sound?  Surprisingly there is no simple
answer to this question, given the additional effects of plate
arching, sound post placement, bridge tuning, etc, in the
ultimate bowed instrument sound.

Nor has there been much help from the theoretical side.
Profound difficulties remain in creating any analytic model
of violin radiation: non-analytic shapes of the various
substructures, nominally orthotropic wood materials with
variable density and grain angle, reliable extraction of the
nine independent elastic moduli, characterization of joints,
stress loading of bridge and sound post, the bridge-corpus
interaction, a physical mechanism for cavity mode
excitation.

Given these difficulties we chose a workable alternative:
treat only the general aspects of measured violin vibration
and radiation properties in a basic structural acoustics
context, defining the violin in effect not by what it is –
materials, shape, construction – but by what it does – using a
comprehensive range of excited-at-bridge dynamics,
vibration and radiation, all integrated into a “dynamic filter”
(DF) model1 for violin radiativity.  Implicit in this model of
violin radiativity is the underlying notion that applying a
driving force at the bridge, as in bowing, will return a
perceivable pressure, a sound.

The necessity to place any model of violin sound into a
structural acoustics2 context can be argued from one key
example, viz., the effect of “tuning” the top and back plates
of the violin prior to assembly. Plates graduated towards the
thick end of the usual range will move the assembled corpus
(top + ribs + back) modes toward higher frequencies,

simultaneously lowering the plate critical frequency fcrit –
where the bending wave catches up with speed of sound and
vibrational energy transformation into radiation maximizes –
due to the dispersive bending waves increasing in velocity as
√f (all frequencies f in Hertz). Tuning plates toward the thin
side has the converse effect.

Experimental examples of such “low-high” behavior
appeared in 1991 when Dünnwald presented 10-violin
superposition plots3 of excited-at-bridge, single-microphone
pressure measurements for i) old-Italian violins (a nominal
standard of quality), characterized by consistent low-lying
corpus mode radiative behavior and a high frequency output
that fell between ii) master maker violins, whose corpus
mode frequencies tended to fall below old-Italian values but
with a much-extended high frequency output, and iii) factory
violins, typically with over-thick plates, whose corpus mode
frequencies fell higher than old-Italian corpus mode
frequencies but with a much-contracted high frequency
output. The excellent agreement between DF model
simulations for plate tuning (shown later) and general trends
observed in these 10-violin subsets – e.g., the factory violins
showed relatively weak A0 and weak response above 3 kHz
– provides strong validation of the model and its inclusion of
structural acoustics.

The DF model was developed to account for radiative
behaviors observed for experimental mean-square, averaged-
over-sphere total (f-holes + surface) radiativity profiles
<R(f)2> for 17 violins (r = 1.2 m, anechoic chamber,
“unconstrained” free-free suspension), paired with
simultaneous EMA mean-square, 14-violin average-over-
corpus violin mobilities <Y(f)2>  (Y(f) is the frequency-
dependent complex ratio of surface normal velocity to
driving force).

Having <R(f)2>, <Y(f)2> and their ratio significantly
expanded the applicable structural acoustics to include
radiation efficiency, critical frequency and statistical energy
analysis (SEA) concepts2. Some of the most important
general results incorporated in the DF model include:

1)  below ~600 Hz - the open string deterministic region
with five well-separated “signature” modes readily tracked
from violin to violin; three of which always radiated
strongly, viz., the violin’s compliant wall Helmholtz
resonator A0, near 275 Hz and two large volume-change, 1st

corpus bending modes B1– and B1+, nominally near 470 and
540 Hz, resp.  A0, B1– and B1+ radiate completely (A0) or
primarily (the B1 modes) through the f-holes4. In addition,
A1, the 1st longitudinal cavity mode near 470 Hz radiates
through induced wall motions but rarely strongly4; it is
important because it couples to A0. The CBR mode near 400
Hz doesn’t radiate significantly and is neglected. In the DF
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model cavity volume flows induced by B1 wall motions
only, which also contribute B1 surface radiation, are
employed in a wall-driven, dual-Helmholtz resonator
network model for A0 f-hole radiation1. The complexity of
the signature mode region can be seen directly in the
experimental mode veering diagrams5 of Weinreich, Holmes
and Mellody that exposed significant interactions between
A0 and the B1 modes; 2) from ~600 to ~ 800 Hz -  a
featureless radiativity ‘trough” where <R(f)> ≈ 0.19 Pa/N at
630 Hz for all violin quality classes in the 17-violin dataset 1;
and 3) above ~800 Hz - a statistical region with: i) much
modal overlap, ii) unreliable mode tracking across violins,
iii) the major effects of bridge rocking frequency (frock)
tuning, iv) band-average modal properties parameterized via
trend lines, and v) applicable SEA methods-formulas.

In the deterministic region the computed DF model
radiativity “profile” RDF(f) reliably predicts A0 strength1 .
The statistical region DF model starts with the mathematical
identity, viz., <R(f)2> = <Y(f)2> • {<R(f)2>/<Y(f)2>}, with
subsequent relevant structural acoustics parameter
substitutions while still retaining its identity character. The
RHS 1st term provides a gauge of mode/band excitation,
while the 2nd {} term leads to the radiation efficiency Reff(f),
the violin’s effective critical frequency fcrit and the radiation
damping rad(f). The bridge filter effect6 inherent in bridge-
excitation vibration-radiation measurements was emphasized
by introducing a distributed-excitation statistical mobility
function2 Ystat

2, giving <R(f)2> =
<Y(f)2>•{<R(f)2>/<Y(f)2>}•Ystat

2/Ystat
2  =

(<Y(f)2>/Ystat
2•{<R(f)2>/<Y(f)2>}•Ystat

2. The RHS ( ) term
becomes the “shape” function, (f) = <Y(f)2>/Ystat

2. A
“scaling” function S(f) accommodates bridge rocking
frequency changes from the nominal initial frock

1.

Ystat
2 introduces easily modifiable “global” parameters: a)

modal density n(f), the number of modes per 250 Hz band,
b) violin total mass M ≈ 0.4 kg, which varies with plate
tuning, and c) total damping tot(f) f –0.34 from fits to
experimental mobility data. tot(f) sums over rad(f), internal
(heat) damping int(f), (and support fixture damping fix(f),
not considered here). To quantify the fraction-of-vibrational-
energy-radiated the parameter FRAD(f) = rad(f)/tot(f) was
introduced. Near the violin’s effective critical frequency
rad(f) and FRAD(f) both pass through a maximum, and the
violin most efficiently turns vibrational energy into
radiation. The statistical region radiativity profile was
computed from RDF(f)  [(f) • n(f) • S(f) • FRAD(f)/M]1/2.
RDF(f) now “filters” raw string vibrations and naturally
includes any “bridge filter” effects in <R(f)2> and <Y(f)2>.

Auralizations for various violin parameter changes in the DF
model now require only convolving each computed RDF(f)
with the measured bowed-string driving force Fbow(f). These
auralizations still retain much essential violin sound
character due to the attack-decay-sustain-release transients
and phase information in the “stick-slip” driving force, even
though model simplifications clearly must reduce
complexity in the simulated violin sounds. A major point
here is that the realistic bowed-string driving force common
to all auralizations serves to emphasize perceived qualitative

trends in violin sound that accompany stepped changes in
RDF(f) due to only plate tuning, or only bridge tuning.

Auralization
To convert RDF calculations into auralizations the procedural
steps outlined in the appendix arrive at linear-phase, low-
delay, non-ringing FIR filters that can be directly convolved
with driving force signals from bowed strings. Stepped-
parameter auralizations then expose the sound trends.

These auralizations require a bowed string driving force
Fbow(f) consistent with the radiativity measurements. Placing
a transducer at each string termination introduces significant
crosstalk, while at the same time each transducer needs its
own specific equalization function to compensate for the
“acoustic fingerprint” of the violin used to record samples
since the DF-modeled violin is to be auralized , not the
violin used for playing. A single transducer at the waist of a
conventional bridge (inset Figure 1): i) avoids cross-talk, ii)
is favorably close to the strings, and iii) can be instrumented
for the equalization task. The instrumented bridge was
mounted on a Yamaha model SV 200 solid body violin
(mass = 0.65 kg vs. the ~0.07 kg spruce top of the traditional
violin) of low structural complexity to minimize any
“acoustic fingerprint” from feedback to the waist transducer.
The transducer signal supplies the bowed string driving force
(sound samples of this signal on author's home page: first
eight bars of J. S. Bach’s Double from Partita No. 1, BWV
1002).

Although violin bridge “filter” effects rival the effects of
plate tuning1 (as will be seen) only the bridge top filter
function top(f) is important here, as expressed in Fwaist (f) =
Fbow(f) top(f). top(f) was estimated from frequency
response functions measured for mini-force hammer impacts
at the E and G string bridge sides and the in-waist transducer
response. The original bowing force was retrieved by
applying the serial inverse filter top(f) –1 to Fwaist (f), i.e.,
Fbow(f)  =  Fwaist (f) top(f)–1.

Auralizations of DF model simulations were created for
three important stages of violin development: Stage 1) pre-
assembly thick-intermediate-thin plate tuning (anechoic
chamber RDF), and Stage 2) post-assembly frock tuning 2.6-
3.0-3.4 kHz (anechoic chamber RDF). All simulations assume
a properly set up traditional violin.

Stage 1:  pre-assembly - plate tuning
The physical effects of plate graduation are straightforward.
Thicker plates (with higher mass) lead to higher assembled-
violin mode frequencies, somewhat reduced mechanical
response and weakened A0 excitation.  Thicker plates also
lead to lower critical frequencies,  reducing high frequency
response above the critical frequency fcrit. The RDF
simulations for plate tuning effects range from: a) thick plate
violins with plate mode #5 ≈ 400 Hz consistent with a
machine-figured (factory) student violin and fcrit ≈ 2 kHz, to
b) intermediate plate violins with mode #5 ≈ 360 Hz and fcrit
≈ 3.3 kHz, to c) thin plate violins with mode #5 ≈ 340 Hz
and fcrit ≈ 4.6 kHz.  Note that relatively large fcrit changes
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accompany relatively small mode #5 frequency changes.
Figure 1 presents the three plate tuning radiativity profiles
(sound samples are provided9).

The RDF curves in Figure 1 (frock = 3.2 kHz) reliably
represent experimental trends for the 17-violin-average
radiativity profile over the various violin quality classes.
Changes near 1 kHz come from an ~13% mass decrease
accompanying thick → thin plate tuning.

Overall, thick plates substantially decrease RDF above fcrit = 2
kHz as radiation damping above fcrit falls off as 1/f.
Somewhat smaller decreases occur in the A0-B1 region,
signalling relatively weaker low and high frequency regions,
consistent with the Dünnwald 10-factory violin dataset.
(Perceived sound evolution for fcrit = 4.6 kHz → 2.0 kHz is
especially revealing.)

Figure 1: Effect of plate tuning on the violin’s anechoic
chamber radiativity profile (frock = 3.2 kHz.): “thick” (thick line)
with fcrit = 2 kHz, “intermediate” (thin dashed line) with fcrit = 3.3
kHz and “thin” (thin line) with fcrit = 4.6 kHz.  (A bowed-string
excitation sound (wav) file accompanies each profile.)  Labels:

deterministic region - signature modes A0, B1– and B1+; statistical
region major structures - fixed frequency “ring” and BH, and

variable frequency frock. (Inset: transducer position blackened in
bridge waist.)

Stage 2:  post-assembly - bridge tuning
The stepped-frock simulations in the model use systematic
experimental measurements6 since no reliable theoretical
model exists.  Stepping the rocking frequency frock from 2.6
→ 3.0 → 3.4 kHz as in Figure 2 produces RDF trends quite
similar to those seen in Figure 1 for plate tuning. Higher frock
(thicker waist) increases the radiativity considerably more at
high frequencies than low. All bridge tuning simulations
used fcrit = 3.9 kHz, the bad-good-excellent 14-violin average
result1. Two important insights into violin sound now
emerge, viz., tuning low frequency modes of the top and
back plates simultaneously affects both the low and high
ranges of violin response; similarly, tuning the high
frequency frock affects both the high and low ranges.  Thus
some plate tuning outcomes can be compensated for to some
extent by compensatory bridge tuning, a possible rationale
for why plate tuning remains a somewhat murky area. Figure
2 presents the three bridge tuning radiativity profiles (sound
samples are provided9).

Figure 2 : as in Figure 1, but fcrit fixed at 3.9 kHz
and frock varied from 2.6 kHz (thick line) to 3.0 kHz (thin dashed

line) to 3.4 kHz (thin line).

Summary
In summary these first model-based auralizations of violin
sound use a realistic bowed-string driving force and provide
a perceptual acoustic sense of the purely mechanical plate or
bridge tunings that complement the dynamic filter model’s
visualized radiativity profiles. Deterministic and statistical
regions of violin spectra are modelled from empirical data to
reveal trends rather than details.
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Appendix - Converting RDF(f) into minimum phase filters

The process to convert RDF(f) calculations into minimum-
phase filters follows this five-step procedure:

 Zero-pad RDF(f) down to DC if necessary (our data
holds information only for frequencies between 125 Hz
and 6,000 Hz, at a resolution of 1 Hz). The real part of
the coefficient set in the frequency domain is Ak = 0 for
k = 0, …, 124, and Ak = RDF(f) for k = 125, …, 6,000.
This coefficient set of length N = 6,000 is mirrored to
also represent corresponding negative frequencies while
obeying the periodical-spectrum paradigm of discrete
transforms. A2N-k = Ak for k = 1, …, N - 1. The imaginary
part Bk = 0 for k = 0, …, 11,999. The data set now holds
2N = 12,000 complex coefficients.

 Apply an inverse discrete Fourier transformation (IDFT)
resulting in a coefficient set a[n], n = 0, …, 2N - 1 with
only real parts and no imaginary parts. This set
represents a time signal of 1 s duration at 12 ksamples/s.
As a result the desired violin impulse response will be
found in two halves, at the two sides of a[n].

 Proper concatenation of the two halves results in a
symmetric impulse, a[n] = a[2N+n] for n = -N, …, -1,
centered around n = 0, and represented in the range
n = -N, … N - 1. To achieve causality, the set should
finally be shifted, a_causal[n] = a[n-N] for
n = 0, …, 2N - 1. This impulse response has a linear
phase and zero group delay but some delay with the
potential of ringing, since some hundred coefficients
ahead of the main impulse already have significant
values. Such an ascending signal would be annoying.

 Flipping this pre-impulse fraction of the impulse
response and adding to the post-impulse side achieves
an initial impulse followed by a declining envelope and
some subsequent instrumental reverberation. Such
flipping however creates a too instantaneous impulse at
t = 0 causing an annoying clicking. Therefore, the left
(right) side of the impulse is ramped down (up) with a
psycho-acoustically neutral 10 ms ramp in form of a π/2
cosine, prior to flipping. The ramp is applied to the
coefficient set prior to shifting, when the impulse is still
symmetric around n = 0. For a ramp of length 2M + 1
we use r[n] = 0.5 + 0.5·sin (π · n/2M) for n = -M, …, M,
extended by zeroes to the left side, r[n] = 0 for
n = -N, …, -M, and extended by ones to the right side,
r[n] = 1 for n = M, …, N -1. The impulse response is
now weighted with the ramp, a_r[n] = a[n] · r[n], but
also with the flipped ramp, a_rf[n] = a[n] · r[-n].
Flipping and adding a_rf[n] to a_r[n] is equivalent to
doubling a_r[n], since a[n] was symmetric around
n = 0. Note, that r[n] + r[-n] = 1 for all n.  The impulse
is now non-ringing and psycho-acoustically prepared.
The coefficient set 2 · a_r[n] has a linear phase and a
much smaller delay. The shifting for causality now only
takes the ramp into account, a_causal[n] = 2 ·a_r[n-M]
for n = 0, …, N + M - 1.

 This impulse response now serves as the DF filter to be
convoluted with the bowed string driving force obtained
from a solid body violin in the time domain. The sound
was re-sampled to match the 12 ksamples/s as defined
by the data size of RDF(f).

As an alternative to the outlined method the Kolmogerov
method8 also achieves minimum-phase, single-sided, low-
delay impulse responses. The Kolmogerov method is widely
used and commonly known as real cepstrum (MATLAB
function rceps) requiring the first three preparation steps as
described and requiring a post-processing to effectively
prevent the echo that comes along when using rceps.
However, with this method, the phase is not linear anymore,
and the impulse responses reveals a dark sound (A0 and
signature modes are overemphasized). The reason for this is
that the minimal phase only holds for frequencies below the
first resonances, while higher frequencies are delayed, see
figure 3 the phase in the right column. Even though the
results from the two methods are numerically the same in
terms of their spectral magnitude, the auditory event differs
due to the different phase. Perceptually the flipped IR is very
close to the symmetrical IR obtained from IDFT, while the
minimum-phase IR is not. Therefore, the flipping method is
preferred for the appended sound samples.

Figure 3 : comparison of the two methods, "flipping"
method (left column) and "real cepstrum"(right column),

from the top: impulse response in the time domain,
in the frequency domain magnitude and phase, and

the associated roots represented in the complex plane.
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