
Optimal planar microphone array arrangements

Ennes Sarradj
Lehrstuhl Technische Akustik, Brandenburgische Technische Universität Cottbus-Senftenberg

03046 Cottbus, Deutschland, Email: ennes.sarradj@b-tu.de

Introduction

The usefulness of a microphone array for the purpose of
acoustical measurements depends on a number of factors.
One of them is the arrangement of the microphones. It
is well known that the arrangement of sensors in an ar-
ray determines the overall properties of the array and
it has been shown that different arrangements lead to
different properties, see e.g. [1]. Because the number of
microphones in an array determines also the cost of the
measurement equipment and its operation, there have
been a number of efforts to optimize the arrangements
that are used to get the best results from a given num-
ber of microphones, see e.g. [2, 3, 4, 5]. Most of these
approaches make use of a parametrized arrangement (con-
centric circles, possibly multi-armed spirals etc.), were the
properties of the microphone array can be tuned or opti-
mized by alteration of the parameters. In what follows
an attempt is made to synthesize optimal microphone
arrangements without the need to apply possibly cumber-
some numerical optimization. The analysis is restricted
to planar arrangements.

Method

Properties of microphone arrays

In general, any planar microphone array may be described
by the number of microphones N , the aperture D, which
is the overall dimension of the arrangement, and the
form and pattern of the arrangement. If a beamforming
method is used for the processing of the microphone
signals, the array forms a directional sound receiver that
can be steered to different locations in order to provide
simultaneous characterization of multiple sound sources.
The directional characteristics of this array receiver may
be given by its point spread function (PSF). The PSF
is the output from the array in the presence of a point
source.

Fig. 1 shows a cut plane of an example of a two-
dimensional PSF together with the color-coded map of
such a PSF. Two properties of the PSF are of interest.
First, the width of the beam b determines how good two
sources can be separated with the array and should be
small. The second property is the minimum level differ-
ence ∆LS between the main lobe at the source position
and the unavoidable side lobes. It determines the maxi-
mum level difference between a major and a minor source
that can be allowed if the source should be identified
using the array. ∆LS should preferably be large.
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Figure 1: PSF Example with beam width b and minimum
sidelobe level ∆LS . θ gives the look direction from the array
and k is the wave number. Inset shows a two-dimensional map
of a similar PSF.

Continuous aperture

While the PSF of an array can only be calculated numer-
ically, the PSF of a sound receiver that is continuously
distributed over a plane may be estimated from analytical
calculation. One case is a circular continuous aperture,
where the PSF is given [1] by

W (kr) = 2
J1(kR sin θ)

kR sin θ
(1)

and J1 is the first order Bessel function and R = D
2 . It

turns out that in this case ∆LS = 17.57 dB. In order to
increase this value, a weighting may be introduced where
the contribution from certain regions within the circle is
attenuated. Different concepts for this weighting exist [6].
If only monotonic functions in the radius coordinate r
are considered, one option is the weighting proposed by
Hansen [7]

fH(H, r) = I0

(
πH

√
1−

( r
R

)2)
, H ≥ 0, (2)

that depends on the parameter H and uses the modified
zeroth order Bessel function I0. For H = 0 a uniform
weighting (equivalent to no weighting) results. Larger
values of H lead to larger values of ∆LS , but produce
also wider main lobes, see Fig. 2. While any weighting
will have its influence on both ∆LS and b, (2) appears
to produce optimal results in the Pareto sense, i.e. the
largest ∆LS for a given b and the smallest b for a given
∆LS . The weighting given in (2) can be generalized when
I0
(
πH r

R

)
is used as the weighting function for H < 0.
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Figure 2: Weighting for a continous aperture proposed by Hansen [7]

Spatially sampled aperture

In order to make the transition from a continuous aperture
to an array of microphones, the latter may be considered
as a form of the first that is spatially sampled. A first
approach for this sampling is to distribute the microphone
positions uniformly over the aperture so that each mi-
crophone stands for an area of the same size. Another
consideration is that beamforming makes use of the phase
(or signal time) difference for each possible microphone
pair. Thus, in order to get a maximum of information
and the to treat all azimuthal directions of incidence the
same, the microphones should be uniformly distributed
over all angles φ seen from the center of the circle.

It is relatively easy to produce a microphone arrangement
with uniform distribution of microphones over the circle
in form of a regular square or triangular lattice. However,
in these lattices some directional differences between mi-
crophone pairs will occur much more often than others.
A number of different approaches (e.g. [1, 4, 5]) take
this into account and produce arrangements that have a
uniform distribution over all angles (spirals, circles, etc.).
However, they do not produce a uniform distribution over
the circle area in a controlled way.

Both requirements – uniform distribution over the circle
and over all directions – are realized in some disc phyl-
lotaxis. One example is the flower head of a sunflower,
where each floret (and later each seed) occupies the same
area and the florets are evenly distributed over all di-
rections. The arrangement can described by Vogel’s [8]
spiral

r = R

√
n

N
, n = 1, 2, . . . , N (3)

φ = 2πn
(1 +

√
V )

2
(4)

if the parameter is chosen to be V = 5. Interestingly,
modifying the parameter V in this model results in a
great variety of different arrangements (see Fig. 3).

The weighting from (2) can be applied by simply atten-
uating the microphone output signals with appropriate
factors. However, this will not make an efficient use of the
microphones, because some of the microphones will then

provide only a minor contribution to the array output.
Another approach to apply the weighting is to modify the
arrangement of the microphones, so that a high density
of microphones per area corresponds to a high weighting
factor and a low density corresponds to a low weighting
factor. An appropriate arrangement is found starting at
Vogel’s spiral.

Equation (3) can be rewritten as

rn = R

√√√√ n∑
m=1

1

N
=

√√√√ 1

π

n∑
m=1

πR2

N
, n = 1, 2, . . . , N, (5)

which shows that the overall area πR2 is partitioned to
associate the same 1

N of the total area to each of the
microphones. To associate the individual microphones
with different areas, the weighting function is introduced
in the equation:

rn = R

√√√√ n∑
m=1

∫ R
0
fH(H, r)dr

NfH(H, rm)
, n = 1, 2, . . . , N. (6)

This is a system of equations which can readily be solved
using a nonlinear least squares method. Together with
(4) the solution gives the arrangement of microphones.

Fig. 4 shows some examples for different values of H.
The overlaid Voronoi diagrams demonstrate the different
area sizes associated with the microphones. The different
arrangements lead to different point spread functions (see
Fig. 5) and thus also to different array properties.

Results and discussion

For a given microphone array, the beam width and the side
lobe level depend on the Helmholtz number D

λ and thus
on the frequency. While the influence on the beamwidth
can be removed using the Helmholtz number as a scaling
factor, the frequency dependency on the side lobe level
cannot be removed easily. However, the ranking of dif-
ferent array arrangements with regard to the side lobe
level does not strongly depend on frequency. Thus, the
results are reported here for only one frequency. A similar
reasoning holds for the number of microphones in the
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Figure 3: Examples for different arrangements with N = 64 produced from (3) and (4)
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Figure 4: Examples for different arrangements with N = 64 produced from (4) and (6) with Voronoi diagrams showing
approximately the area per microphone

arrangement, were the results reported here are restricted
to the case of N = 64.

The microphone array properties for arrangements accord-
ing to (4) and (6) depend on both the ”angle” parameter
V and the ”radius” parameter H. Fig. 6 shows b and
∆LS for 940 different parameter sets for 3 ≤ V ≤ 7 and
−4 ≤ H ≤ 4. It turns out that for a given H, V = 5.0
produces the best results. It can therefore be argued that
when setting V = 5.0 (Vogel’s spiral), Pareto-optimal re-
sults are produced. Moreover, the position on the Pareto
front can be controlled with the parameter H. A negative
value produces a more narrow beam and results in a lower
∆LS , while a positive value widens the beam but gives
a better ∆LS . The analysis for different N and different
D
λ leads to the similar results not reported here.

Fig. 6 also shows results for other classes of microphone
array arrangements. The circle geometry yields the most
narrow beam width, but has also a low side lobe level.
When comparing to Fig. 4 it becomes obvious that the
circle arrangement will also be produced when H → −∞.

It is therefore a special case of the proposed approach.
Another class of arrangements that is known [9] to yield
good results is the multi-armed logarithmic spiral pro-
posed by Underbrink [4]. Fig. 6 contains results for 45 of
these spirals with varying parameters. While the prop-
erties of all of these arrangements are very close to each
other, they do not reach the Pareto front of the proposed
arrangements.

Conclusion

It is shown that an approach that combines the phyl-
lotaxis modeled by Vogel’s spiral with a modified Bessel
function weighting proposed by Hansen leads to micro-
phone arrangements that have Pareto-optimal properties.
The approach does not require numerical optimization
and the properties can be systematically adjusted by
one parameter H used for the synthesis of a microphone
arrangement.
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Figure 5: Point spread functions for the example arrangements shown in Fig. 4 for D
λ

= 10 and |θ| < π
4

24 20 16 12 8
∆LS /dB

0.4

0.5

0.6

0.7

0.8

bD
/λ H

best Under-
brink spiral [4]

H = 0, V = 5.0

circle

Figure 6: Beam width and sidelobe level for D
λ
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for the proposed arrangements using (6) and (4) and different
H and V (gray), for V = 5.0 (green), for multi-armed logarithmic spirals after [4] (cyan) and a circle arrangement (magenta)

References

[1] D. H. Johnson and D. E. Dudgeon. Array signal pro-
cessing: concepts and techniques. Simon & Schuster,
1992.

[2] A. Nordborg, J. Wedemann, and L. Willenbrink. Op-
timum array microphone configuration. In inter-noise
2000, 2000.

[3] J. Hald and J. J. Christensen. A class of optimal
broadband phased array geometries designed for easy
construction. In inter-noise 2002, 2002.

[4] J. Underbrink. Aeroaoustic phased array testing in
low speed wind tunnels. In T. Mueller, editor, Aeroa-
coustic Measurements, pages 62–97. Springer, Berlin
Heidelberg, Germany, 2002.

[5] C. Schulze, E. Sarradj, and A. Zeibig. Characteristics
of microphone arrays. In inter-noise, 2004.

[6] R. C. Hansen. Phased array antennas. John Wiley &
Sons, 2001.

[7] R. C. Hansen. A one-parameter circular aperture
distribution with narrow beamwidth and low sidelobes.
IEEE Transactions on Antennas and Propagation, AP-
24:477–480, 1976.

[8] H. Vogel. A better way to construct the sunflower
head. Mathematical biosciences, 44(3):179–189, 1979.

[9] Z. Prime and C. Doolan. A comparison of popular
beamforming arrays. In ACOUSTICS 2013, Pro-
ceedings of the Annual Conference of the Australian
Acoustical Society, Victor Harbor, 2013.

DAGA 2015 Nürnberg

223


