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Computation of the diffracted field by an elliptic rigid(/elastic) scatterer
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Introduction & Context

This work is part of a more general study that aims at the
numerical modelling of the ultrasonic propagation (with
multiple scattering) in the trabecular bone. Trabecular
bone is important as it is involved in the mechanical re-
sistance of the bone itself, and also in the reconstruction
mechanism after fracture. In this approach, we represent
the internal structure of the trabecular bone by multi-
ple independent scatterers. As the geometry of the bone
structure is mainly based on long fibers of bone tissue,
we simplfy the model by replacing these structures by
long elliptic elastic scatterers.

Typical dimensions of such elliptic scatterers are about
700um x100pm, with an ultrasonic inspection frequency
of IMHz. Based on these orders of magnitude, we clearly
see that the individual scatterers are much smaller than
the wavelengths.

The ISA theory is a simplified model that allows to de-
scribe multiple scattering, under some assumptions that
are not discussed here. This model is based on the indi-
vidual response of each scatterer, this is the reason why
we feel concerned in this kind of computation.

Computation with a FDTD code

The first simulations are based on the Finite-Difference
Time-Domain (FDTD) code SimSonic [1] developed by
E. Bossy. In all the following we only considered the 2D-
case. SimSonic is used to calculate the propagation of a
plane wave with and without the elliptic scatterer. It is
then enough to evaluate the difference between the two
resulting fields to obtain the contribution of the scattered
pressure only. In this simulation, the elliptic scatterer can
be either rigid or elastic, and is immersed in water.

The computation is done using staggered grids for stress
and strain, with a spatial step size Az that must be cho-
sen small enough to describe precisely the external shape
of the scatterer. From the CFL condition, we obtain the
value of the temporal step At that ensures the stability
of the numerical scheme. In addition to that, it is neces-
sary to take into account PML conditions on the borders
of the numerical domain, in order to avoid undesired re-
flections.

If we divide the spatial grid step Az by 2, the amount
of memory is multiplied by 4, and the total computation
time by 8. This means that the computation cost can
increase rapidly. For the purpose of this work, we have
considered a spatial step Az = 2pum. The total computa-
tion time is about 4 days on a 16-core Intel Xeon 64bits
processor. The configuration is illustrated by Fig.(1).
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Figure 1: Computation of the scattered field with SimSonic

Alternate approach: the modal decompo-
sition

A classical formulation used for a circular scatterer is
based on a decomposition of the incident and scattered
field on a particular basis that is adapted to the shape
of the scatterer. In this particular case, the cylindrical
wave basis is particularly pertinent, therefore resulting
in rewriting the incident plane wave as follows:
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where (r,0) are the cylindrical coordinates of the obser-
vation point, and J,, the standard Bessel function of the
first kind. Similarly the scattered field is then written as
follows:
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where H,, is the Hankel function of the first kind, and
A,, the amplitude of the corresponding mode.

Writing the boundary conditions on the surface of the
circular scatterer yields a linear system that allows the
numerical computation of the coefficients A,,. Of course
the infinite summation must be truncated, and the num-
ber of terms that are needed to ensure the convergence
is classically known as being directly related to ka, prod-
uct of the wave number (in the surrounding fluid) by the
radius of the scatterer.

This formulation is adapted to the circular scatterer be-
cause the r and 6 variables are separable in the wave
equation, and the border of the scatterer corresponds to
a condition {r = constant, V6}.

Clearly these conditions are not satisfied for the elliptic
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scatterer. A first solution consists in using elliptic coordi-
nates: this allows to write a similar summation, based on
Mathieu functions instead of the Bessel functions above.
Unfortunately, this approach is not suitable for elastic
scatterers. Another solution has been proposed by Chati
et al. [4] that consists in a generalization of the circular
formulation to the case of the elliptic scatterer. In this
work, we have been interested in the evaluation of the
limitations of this generalization.

The reader can refer to Chati et al. [4] for a detailed de-
scription of the proposed method. Basically it relies on
a numerical integration of the boundary conditions over
the surface of the elliptic scatterer. Of course the mathe-
matical formulation is more complex than in the circular
case, but the general principles remain unchanged. Once
the boundary conditions are rewritten using the angular
integration, we obtain a matrix to be inverted. This gives
the values of the A,, coefficients, that can finally be used
to calculate the scattered pressure.

Practical implementation: the proposed method has
been implemented through a Matlab code to calculate the
scattered pressure for various reference ellipses, as men-
tioned in Chati et al. [4]. The aspect ratio of the ellipse
is 0.75 and ka ~ 15 — 20, where «a is the largest radius of
the ellipse. Computation is fast, efficient, and provides
results that have been confirmed experimentally. Ap-
plying the same code to our small ellipse 100pm-700pm
yields immediate huge difficulties:

e we do not observe any real convergence of the sum-

mation,
the initial symmetry of the problem may be lost,

Matlab prints diagnostic messages related to the
rcond () number of the matrix,

the matrix is very ill-conditionned due to the Bessel
and Hankel functions.

With standard computer arithmetics (64 bits floating
numbers), the relative precision is € ~ 1716: this means
that the computer cannot differentiate 1 and 1 + . The
classical consequence of this is that the precision loss in-
crease at each operation, particular when we have to ma-
nipulate numbers of different orders of magnitude. This
is typically what happens here, where the Bessel function
J,, rapidly tends to zero near the origin, while Y, tends
to infinity.

As the matrix is very ill-conditionned, the computation
of its inverse is either impossible or yields erroneous re-
sults: the matrix is then numerically singular. This be-
havior also explains the loss of the original symmetry:
the erroneous coefficients A,, used in the summation to
calculate the scattered field produces a final result that
is absolutely not significant.

The use of extended precision

In all the following, we now only consider the particular
case of a rigid scatterer, as the elastic situation may be
significantly more complex.
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One of the key points is the precision that results from
standard arithmetics and is limited to 15-16 digits. The
idea consists here in performing the same computation,
but using an extended precision.

A first simple solution is to use 128bits floating numbers
with a precision of 33 digits. Practically, in a problem
like the one presented in this paper, we can rapidly ob-
serve that 33 digits are still not enough. Thus we have
preferred a solution based on arbitrary precision.
Several numerical solutions can be tested:

e Python+mpmath: this solution works and can be
easily implemented; the counterpart is that it is not
very efficient in terms of the computation time,

GMP-+MPFR: GMP [2] is a free C library for ar-
bitrary precision computation, and MPFR [3] is a
free C++ class for GMP: all necessary functions ex-
ist (trigonometric functions, Bessel and Hankel func-

tions), we just need to adapt the tanh-sinh integra-
tion rule to MPFR.

We have implemented and tested these three solutions,
and finally retained the third one.

Whatever the solution we choose, the common counter-
part of this kind of approach for numerical computation
with arbitrary precision is the computation time, that
may rapidly increase with the number of digits.

Figure (2) represents the modulus of the scattered pres-
sure (far field, calculated at 10 mm from the center of
the elliptic scatterer) in all observation directions for a
given frequency f=1 MHz. Figure (3) represents the
same result using the modal decomposition with 2x50
(blue curve), 100 (green curve), 200 (red curve) and 300
(black curve) terms. Comparing these two figures, we ob-
serve that the modal decomposition effectively converges
to the expected solution, but requires a large number of
terms (at least 200 in this particular case).
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Figure 2: Computation of the scattered field with SimSonic

The importance of precision

Based on the previous results, we have evaluated the in-
fluence of scattered field computation precision, observ-
ing that we aim at 300 terms in the summation. For that
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Figure 3: Computation with the modal decomposition using
2x50, 100, 200 and 300 terms

purpose, we calculate

log ([ps,n+1(0) — ps,N(e)Dee[ogw]

This expression evaluates the influence of an additionnal
term on the final result, averaged on the different values
of the observation direction #, and consequently repre-
sents a quantitive evaluation of the convergence. Figure
(4) represents the previous expression as a function of
the number of terms N for 50 digits (blue curve), 100
digits (red curve) and 300 digits (green curve). For less
than 130 terms, the three curves cannot be differenti-
ated, this means that the three precisions give the same
result. In this case, the use of 300 digits is of course not
justified. After 130 terms, the blue curve starts showing
a strange heratic behavior: the precision of 50 digits is
no more enough, and we observe numerical instabilities.
The red curve shows the same behavior near 270 terms,
once again is means that after 270 terms, a precision of
100 digits is not enough to obtain a pertinent evaluation
of the scattered pressure.

Figure 4: Influence of the precision

Table 1 gives the order of magnitude of the computation
time, depending on the number of digits that have been
used. A dedicated parallel scheme has been developped
for this simulation, with ~150 computation cores 24h a
day. The total simulation has been run in one week of
human time.
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Table 1: Computation time

Precision N | Matrix size | Computation time*
50 digits | 130 259259 ~ 7 days

100 digits | 270 439%x439 ~ 45,5 days
300 digits | 320 639%639 ~ 766 days

*monoprocessor equivalent

Evaluation of the number of terms

As we have seen above, it is important to have a good idea
of the number of terms that will be needed in the modal
decomposition to reach the numerical convergence, as
this number of terms will then give a condition on the
required precision that must be used. For that purpose,
we have run multiple simulations with various elliptic ob-
jects with (ka, kb) varying in the domain [1,10] x [1,10].
Here, a and b are the half-axes of the ellipses.

We first start with the diagonal of this domain, that cor-
responds to circular scatterers of increasing size. We in-
troduce here a new quantitative evaluation of the con-
vergence as

log <

where ps enq is the solution obtained for a arbitrarily (and
large enough) chosen maximum number of terms.

ps,N(a) - ps,end(g) ‘>
ps,end(e) 0€0,27]

The blue curves on Fig. (5) illustrate the convergence
for ka = 1 (left) until ka = 10 (right). The red and
green curves correspond to small objects, with ka = 0.1
and ka = 0.5 respectively. All these curves show a first
plateau (the number of terms is not large enough to en-
sure the convergence), followed by a break and a fast
convergence. The position of the break clearly varies reg-
ularly and linearily with the size of the circular scatterer.
This is a well-known result that the modal decomposition
requires a number of terms that is around ka. This result
applies only in the particular case of circular scatterers.

Figure 5: Convergence for circular scatterers, ka = kb in-
creasing from 1 to 10

We now explore another portion of the domain: we start
with ka = kb = 1, leave ka unchanged and increase kb
to 10. The obtained result is shown on Fig. (6). For the
purpose of comparison, the two red curves correspond
to a small disk (ka = kb = 1) and a large disk (ka =
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kb = 10) respectively. Then the blue curves correspond
to kb = 2 until kb = 10, from left to right.

Looking at this figure, we clearly see that the aspect ratio
of the ellipse significantly influences the number of terms
that are needed in the modal decomposition. In this par-
ticular situation, the number of terms of course depends
on the size of the scatterer, but the aspect ratio is clearly
dominant. We also see that for large aspect ratios, the
number of terms becomes unreasonably high, based on
the observations made in the previous section related to
computation time.
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Figure 6: Convergence for elliptic scatterers, ka = 1 and kb
increasing from 1 to 10

The whole domain [1,10] x [1,10] is represented by Fig.
(7). For this figure, we have arbitrarily considered a con-
vergence if the obtained solution differs from the final so-
lution of less than 3%. This figure shows that the number
of terms increase very fast, as soon as the aspect ratio
of the ellipse becomes significantly different from 1. The
same phenomenon is observed for large and small aspect
ratios.

Figure 7: Convergence for elliptic scatterers (top: linear
scale; bottom: log scale)
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Conclusions and perspectives

The first important conclusion is that the modal decom-
position can be adapted for non-circular objects, but
principally if the general shape of the object is not so
far from a circle. Quantifying the "not so far” qualifier is
not easy, as it depends on the computation time that can
be considered as acceptable. Otherwise (and our example
based on ellipses illustrates the problem), it may become
very difficult to obtain the convergence, as it may require
a large number of terms (the corresponding computation
cost increase as N?), and consequently also a large pre-
cision (and this also contributes to a very large increase
of the computation cost). Ellipses with a small or large
aspect ratio cannot be considered as ”smooth enough” to
allow the use of this kind of approach.

We may understand this by observing the following
points:

e for the circular scatterer, taking into account a new
term in the summation just reduces to an additional
term, in particular the previously computer coeffi-
cients do not change; this results from an orthogo-
nality relationship between the different modes that
appear in the decomposition,

for the elliptic scatterer, this property is no more
satisfied: modes are not orthogonal, and taking into
account an additional term yields a change of all
coefficients of the summation; this coupling between
modes makes the convergence slow and difficult, and
this effect is enforced by a large or small aspect ratio.

The particular case of the elliptic scatterer can also be
addressed using a change of variable into elliptic coordi-
nates. In this case, the modal summation is based on the
Mathieu functions, in replacement of the Bessel and Han-
kel functions. The inconvenient of this alternate method
is that i) it is mathematically complex and ii) it cannot
be used with objets which are not elliptic. It also appears
that the elliptic coordinates may be not adapted to the
modelling of an elastic scatterer, due to the existence of
two different propagation velocities.

Finally we are investigating a new numerical approach
based on a conformal mapping method: this method
starts to give very promising results, and could be ap-
plied for various object shapes, including flat and thin
ellipses as described in this paper. This new approach
will be investigated in the near future.
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