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Introduction

Nonnegative Matrix Factorization (NMF) is an approxi-
mative low-rank matrix factorization which is frequently
applied for source separation of audio signals (see e.g.
[1]). The quality of source separation algorithms using
NMF strongly depends on the initialization of the NMF.
Very often, random values are used for initialization. Sev-
eral other initialization strategies have been developed,
with the aim to find better initial estimates, thus leading
to a better resulting factorization. Most of these deter-
ministic initialization methods use singular value decom-
position (SVD). In this paper we introduce a new ini-
tialization scheme for audio source separation, based on
complex SVD. We also evaluate several different state-of-
the-art initializations in an audio source separation envi-
ronment. We analyze the effect of the different methods
on different kinds of mixtures and show, that our simple
but efficient method leads to better results than other
SVD-based initializations.

Nonnegative Matrix Factorization

NMF approximates a nonnegative matrix X of size K×N
by a product of two nonnegative matrices B and G,

X ≈ X̃ = BG, (1)

with B of size K × I and G of size I × N . I is a user
defined parameter, which is usually chosen to be smaller
than K and N . For better interpretation of the result of
NMF, Equation 1 can be rewritten in the following way:

X(k, n) ≈ X̃(k, n) =

I∑
i=1

F̃(k, n, i) (2)

with

F̃(k, n, i) = B(k, i)G(i, n). (3)

This can be interpreted as a decomposition of X into
I rank-one matrizes F̃i of size K × N . Each matrix
F̃(:, :, i) is calculated by the multiplication of a basis
vector B(:, i) with an activation vector G(i, :), where
B(:, i) denotes the ith column of B.

The matrices B and G are iteratively calculated by min-
imizing an adequat distance function between X and
X̃. Commonly used distance functions are the Euclidean
distance, the Kullback-Leibler (KL) divergence and the
Itakura-Saito (IS) distance. Lee and Seung [2] introduced
efficient multiplicative update rules for the square of the
Euclidean distance as well as for the KL divergence, re-
sulting in convergence to a local minimum of the distance

function. The proposed update rules for the KL diver-
gence are

G← G⊗
BT

(
X
X̃

)
BT1

(4)

and

B← B⊗

(
X
X̃

)
GT

1GT
(5)

where 1 is a K ×N matrix with all elements set to one
and ⊗ denotes an elementwise multiplication. The divi-
sions are also elementwise.
When applied to the magnitude X of a complex spec-
trogram X of an audio signal, the NMF can be used for
audio source separation. In this case the K×1 basis vec-
tors B(:, i) can be interpreted as spectral bases that are
multiplied with the temporal gain vectors G(i, :). Fig-
ure 1 examplarily shows source separation using NMF
for a mixture spectrogram of piano and bass drum. The
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(a) Mixture of piano and bass drum
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(b) Separated piano
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(c) Separated bass drum

Figure 1: Example for source separation with NMF on a
mixture of piano and bass drum.

basis vectors B(:, i) (left) contain the spectral structures
of the notes played by the piano and of the bass drum.
The temporal gain vectors G(i, :) (top) contain the cor-
responding temporal gains.
For separation, only the first three vectors, which cor-
respond to the components belonging to the piano, are
used to reconstruct the piano spectrogram, the last two
vectors are used to reconstruct the drum spectrogram.
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Initializations

Since the multiplicative update rules only converge to
a local minimum of the cost function, the results of the
NMF highly depend of the initial values of the matrizes
B and G. In the following, we will give a brief overview
over commonly used initialization schemes.

Random Initialization

The matrizes B and G are very frequently initialized
with random values. Usually the absolute values of a
zero-mean normal distribution are used, however, other
random distributions are possible.
The initialization has the advantage of being very easy to
implement. It also has a low computational complexity,
making it interesting for time-critical applications. One
of the downsides of this initialization is, that there is
no physical or mathematical motivation behind it. It is
also a disadvantage, that it is not deterministic, different
random initializations lead to different results, making it
difficult to compare results.
Figure 2 shows an example of the initial and the resulting
matrizes B0,B and G0,G with random initialization for
the audio signal from Figure 1.

Initial Matrix B0
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(a) Spectral basis matrix B
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(b) Temporal gain matrix G

Figure 2: Initial and resulting matrizes B0,B and G0,G for
random initialization.

Semantic Initialization

Under the assumption that the audio mixture contains
harmonic sources, a semantic initialization [3] can be
used. For this initialization, the matrix B is initialized
with the spectral bases of the 88 notes of the piano. The
matrix G is initialized by calculating the correlation of
the corresponding components of B with each time frame
of the spectrogram X. Since the number of components
I is usually lower than 88, the components are deleted
step by step until the desired number of I is reached.
This is done after each NMF iteration by deleting the
component with the lowest energy.
The semantic initialization is clearly motivated and can
be expected to lead to good separation results for har-
monic sources. On the other side, it is optimized only for
harmonic sources and might have problems with other
kinds of signals. Another downside is, that it is neces-
sary to adapt I while performing the NMF, which makes
it necessary to modify the NMF implementation.
Figure 3 shows an example of the initial and the resulting
matrizes B0,B and G0,G with semantic initialization for
the audio signal from Figure 1.
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(a) Spectral basis matrix B
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(b) Temporal gain matrix G

Figure 3: Initial and resulting matrizes B0,B and G0,G for
semantic initialization.

SVD based Initializations

Several SVD based initializations have been proposed in
the past [4, 5, 6]. Performing an SVD on a magnitude
spectrogram X results in three matrizes U, Σ and V,
with the property X = UΣV∗. While Σ contains the
singular values of X, the columns of U and V contain
the left- and right-singular vectors of X. For an audio
spectrogram, these vectors can be interpreted as spectral
bases and temporal gains and thus be used as initial-
ization for the NMF. Only the parts of U and V cor-
responding to the I highest singular values, are used as
initialization for B and G. The negative entries of the
matrizes have to be replaced with nonnegative values to
make it a useful initialization for NMF. Other, more com-
plex initializations using SVD (e.g. NNDSVD [6]) have
been proposed.
Initializations using SVD are deterministic and general-
ized, meaning that they are not specifically designed for
a special kind of signals. The problem with these initial-
izations is the question how to treat negative values in U
and V. Replacing them with zero leads to the smallest
initial reconstruction error, however, it leads to problems
in the NMF because of the multiplicative update rules of
NMF. Using other non-zero values (e.g. absolute values)
avoids this problem, but leads to a higher reconstruction
error.
Figure 4 shows an example of the initial and the resulting
matrizes B0,B and G0,G with NNDSVD initialization
for the audio signal from Figure 1.
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(a) Spectral basis matrix B
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(b) Temporal gain matrix G

Figure 4: Initial and resulting matrizes B0,B and G0,G for
NNDSVD initialization.

Fuzzy C-Means Initialization

The Fuzzy C-Means clustering algorithm can be used to
initialize NMF [7]. Each time frame of X is interpreted
as one data point. These data points are clustered into
I clusters. The cluster centers can be used as initializa-
tion of B, while the partitioning matrix can be used as
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initialization for G.
The Fuzzy C-Means initialization is deterministic and
generalized. A disadvantage of this initialization is, that
it only separates time frames. This means, that temporal
overlapping sources might be represented in one compo-
nent. It can be expected, that this might even deteriorate
the separation results instead of improving them.
Figure 5 shows an example of the initial and the resulting
matrizes B0,B and G0,G with Fuzzy C-Means initial-
ization for the audio signal from Figure 1.

Initial Matrix B0

F
re
q
u
en

cy
In
d
ex

k

Component
1 2 3 4 5

50

100

150

200

250

300

350

400

Resulting Matrix B

F
re
q
u
en

cy
In
d
ex

k

Component
1 2 3 4 5

50

100

150

200

250

300

350

400

(a) Spectral basis matrix B
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(b) Temporal gain matrix G

Figure 5: Initial and resulting matrizes B0,B and G0,G for
the Fuzzy C-Means initialization.

Complex SVD Initialization

We propose to use an SVD on the complex spectrogram
X = UΣV∗, instead of using the magnitude spectro-
gram. The parts of the matrizes U and V corresponding
to the I highest singular values are used as initialization
for B and G. Since U and V are complex, only the
magnitude is used,

B =|U(:, 1 : I)| (6)

G =|V(:, 1 : I)∗|. (7)

Compared to other SVD-based initialization methods,
this approach has several advantages: While the other
approaches perform the SVD on the magnitude spec-
trogram, thus neglecting phase information, the SVD of
the complex spectrogram factorizes the complex spec-
trogram, which is the exact representation of the audio
signal. Also, the problem of how to treat negative SVD
values is solved, since using the abolute values does not
lead to the same problems as replacing negative values
with zeros.
Figure 6 shows an example of the initial and the resulting
matrizes B0,B and G0,G with complex SVD initializa-
tion for the audio signal from Figure 1.
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(a) Spectral basis matrix B
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(b) Temporal gain matrix G

Figure 6: Initial and resulting matrizes B0,B and G0,G for
the complex SVD initialization.

Evaluation

For evaluation we performed a source separation al-
gorithm using NMF on a database of 60 different
sources, containing harmonic instruments, percussive in-
struments, speech, vocals and noise. The 60 sources were
mixed to every possible two-source mixture, resulting
in 1770 mixtures. For the NMF updates we used KL-
divergence as cost function and performed 300 NMF it-
erations.
We performed the algorithm with seven different initial-
izations: We used the random, the semantic and the
Fuzzy C-Means initialization as described. For the SVD
based initializations, we used the state-of-the-art initial-
ization method NNDSVD [6] with replacing the negative
values with zeros (denoted NNDSVD) or with the abso-
lute values (denoted NNDSVDa). We also used a basic
SVD approach as described above, replacing negative val-
ues with the absolute value (denoted SVD). Finally, we
also used the proposed initialization, performing an SVD
on the complex spectrogram.
To evaluate the quality of the different initializations we
used three different measures:

1. The reconstruction error after initialization. It can
be expected, that a good initialization has a lower
reconstruction error already at the beginning of the
NMF. This could lead to a lower reconstruction error
after performing the NMF.

2. The final reconstruction error. This is a commonly
used measure to evaluate the quality of an initial-
ization. A good initialization should lead to a local
minimum of the cost function. If the local minimum
is low, the initialization can be considered to be a
good initial choice.

3. The signal to distortion ratio (SDR). Since we are
interested in source separation, the most important
property that we expect from a good initialization is,
that it leads to a good separation quality. This might
not necessarily be identical to the initialization with
the lowest reconstruction error.

Figure 7 shows the distance of the approximated matrix
with the initial matrizes B0 and G0, X̃0 = B0 · G0 to
the original matrix X.
It can be observed, that the different initializations be-

have differently. The NNDSVDa seems to increase lin-
early. This can be explained with the replacement of
negative entries with absolute values, which causes re-
construction errors. The number of datapoints, where
this replacement takes place increases linearly with the
number of components. The same holds for the SVD, but
with a smaller impact on the reconstruction error. This
problem is prevented when using the complex SVD. The
NNDSVD initialization, replacing negative values with
zero, has the lowest initial reconstruction error for all
tested numbers of I. Figure 8 shows the distance of the
approximated matrix X̃ = B ·G after NMF to the orig-
inal matrix X.
The behaviour is very different to the one of the initial

reconstruction error, showing that the initial reconstruc-
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Figure 7: Initial reconstruction error for different initializa-
tions.
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Figure 8: Final reconstruction error after NMF for different
initializations

tion error is not a good indicator for a good convergence.
NNDSVD, the method with the lowest initial reconstruc-
tion error, has one of the highest reconstruction errors
after NMF. The SVD and the complex SVD initializa-
tion lead to the lowest final reconstruction error. Figure
9 shows the resulting separation quality for the different
initializations. It should be noted, that the final recon-
struction error is not a good indicator for separation qual-
ity. This means, that for an application aiming on source
separation, the reconstruction error is not a reliable basis
for deciding on the initialization. While the semantic ini-
tialization leads to the best separation results, it should
be noted, that the used data set contains a lot of har-
monic sources, favoring this initialization. Comparing
the SVD-based intializations, the complex SVD leads to
the best separation results.

Conclusion

We compared several state-of-the-art initialization meth-
ods for NMF in a source separation environment. We
evaluated the results in terms of reconstruction error as
well, as separation quality. The results indicate, that a
lower reconstruction error does not necessarily lead to
better source separation.
We also proposed a new initialization using an SVD on a
complex audio spectrogram. The results show, that this
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Figure 9: Separation quality for different initializations.

method leads to a very low reconstruction error as well
as to a good separation quality. The separation quality
was better than for all other SVD-based initializations.
Only the semantic initialization resulted in a better sep-
aration quality, however, this initialization is specifically
optimized for harmonic signals, while the complex SVD
can be used on any kinds of signals.
We conclude, that the proposed intialization is a good
alternative to existing initializations in terms of recon-
struction error as well as in terms of separation quality.
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