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Introduction

Spatial perception is a primary function of the human
auditory system. It is essential in decoding the auditory
scene surrounding a listener. Each sound source in such
a scene has a certain location and distance with respect
to the listener. This spatial separation helps the listener
in distinguishing concurrent sources from each other, e.g.
a target speaker from interfering noise sources. The per-
ceived horizontal extent of sound sources is typically de-
scribed by the apparent source width (ASW). A reduced
sensitivity to ASW as e.g. found in hearing-impaired
listeners [6] may have consequences on the ability of spa-
tially separating sound sources. Therefore, it is impor-
tant to understand the contributing cues to ASW per-
ception. According to literature, three binaural cues are
mainly contributing to ASW: The interaural time differ-
ences (ITDs) and the interaural level differences (ILDs),
that are as well important for determining the location of
a sound source in the horizontal plane, and the interau-
ral coherence (IC). Due to reflections in rooms and from
the head and torso of the listener all three cues fluctuate
over time. With increasing amount of room reflections,
the IC decreases and larger variations in ITDs and ILDs
occur, leading to an increased ASW. The psychophysical
relation between these three binaural cues and ASW can
be exploited by binaural auditory models.
Traditional models of ASW are used to evaluate the qual-
ity of concert halls by analyzing the interaural cross-
correlation (IACC) function [1]. Based on the IACC,
the interaural coherence (IC) is extracted as the abso-
lute maximum value normalized by the root-mean-square
(RMS) value of the left and right ear-signal. Hereby, an
inverse relation between IC and ASW exists. Okano et
al. (1995) [9] proposed a frequency-specific weighting of
the IC, termed IACCE3 that averages the IC in three oc-
tave bands 0.5, 1 and 2 kHz. The IACCE3 is calculated
for the first 80 ms of the binaural impulse recordings
(BRIRs) since early reflections are known to contribute
mostly to ASW [4]. Zotter et al. (2013) [13] observed
a high correlation of r = 0.97 between the IACCE3 and
perceptual data obtained in a stereo loudspeaker mea-
surement setup.
Similar ideas as suggested by Okano were implemented in
a complex binaural auditory model by van Dorp Schuit-
man et al. (2013) [10] which splits the input signal in a
direct and a reverberant stream. From the direct stream
the model extracts ITDs up to 2 kHz as the time-lag
at the maximum IC and estimates the ASW by averag-
ing their standard deviation. In contrast to the tradi-
tional IC-based measures, this model is applied on bin-
aural recordings. The model showed higher correlations
with perceptual data compared to the IACCE3. Note

that both studies, Okano et al. and van Dorp Schuitman
et al. further considered the monaural sound pressure
level (SPL) as an additional cue for ASW.
Blauert and Lindemann (1986) [3] suggested that both,
ITD and ILD fluctuations, contribute to ASW. They
combined the standard deviation of both cues with equal
weights and reported a higher correlation with percep-
tual data (r = 0.75) as opposed to an IC-based model
(r = 0.61). Later Mason et al. (2005) [7] developed an
ASW model that combined both ITDs and ILDs accord-
ing to the duplex theory by using ITDs at low frequencies
and ILDs at high frequencies [8] plus including loudness
information.
Obviously, several models of ASW have been suggested
in literature, each validated on different perceptual
datasets. The present study investigates generalizability
of the introduced models by evaluating their performance
across datasets. Hereby, it will be addressed whether (i)
a correlation-based approach, i.e. either extracting IC or
ITD as suggested by Okano et al. and van Dorp Schuit-
man et al., respectively, is sufficient for the estimation
of ASW, (ii) the in literature suggested frequency region
of up to 2 kHz is optimal in such approach or if high-
frequency ICs or ITDs are contributing to ASW as well
and (iii) a model combining ITDs and ILDs as suggested
by Blauert and Lindemann and Mason et al. is feasi-
ble. The models have been validated on two experimen-
tal datasets presented in Käsbach et al. 2014 and 2015
[5],[6].

Summary of the perceptual studies

Two perceptual studies were conducted to measure ASW
([5] and [6]), in the following referred to as Experiment
A and B, respectively. Distinct sensations of ASW were
generated by using stereo loudspeaker setups. In such a
setup the listener perceives a phantom sound image in
the center of the two loudspeakers. The ASW was mea-
sured as a function of the physical source width (PSW)
which was controlled by two experiment-specific settings,
the loudspeaker layout and applied signal processing. In
the measurement procedure listeners indicated the per-
ceived ASW on a degree scale as illustrated in Figure 1.
Note that in Experiment B, listeners could indicate the
left and right most boundary of the sound source sepa-
rately, whereas in Experiment A, the response had to be
given symmetrically. In the present study only 3 source
signals per experiment will be used.
In Experiment A, the stereo setup at an angle of ±30
degrees was used indicated by the red dashed rectangles
in Figure 1. Five distinct PSW values, denoted by PSW
#1 to PSW #5, were generated by varying the coher-
ence between the two loudspeaker channels accordingly
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to ICLS = 1, 0.8, 0.6, 0.3 and 0. The source signal was
either Gaussian white noise, band-pass filtered with a
bandwidth of 2 octaves at a center frequency of 0.25 kHz
or high-pass (HP) filtered at 8 kHz. The stimuli had a
duration of 4 s and were presented at 70 dB SPL.
In Experiment B, the PSW was controlled by varying the
angle between the stereo speakers. In addition, a source
widening algorithm was applied as described in Zotter et
al. (2013) [13]. Specifically, a line-array of 3 stereo loud-
speaker pairs (Type Dynaudio BM6) plus an additional
loudspeaker in the center of the array was used as indi-
cated by the grey rectangles in Figure 1. In total, five
distinct PSW values were generated. The source signals
were pink noise, male speech and a guitar sample. The
stimuli had a duration of 6 s and were presented at 70
dB SPL.
In Figure 2, the perceived ASW as a function of PSW
averaged across listeners is shown for Experiment A
(left panel) and Experiment B (right panel) . The er-
ror bars represent the standard deviation across listen-
ers. It can be seen that ASW increases with increas-
ing PSW. In Experiment A (left panel), the different
signal types (represented by the different symbols and
linestyles) show similar results with a tendency that the
bandpass-filtered signal at 250 Hz and the white noise
signal were perceived with larger ASW than the HP fil-
tered signal at 8 kHz. In a statistical analysis with a
mixed model the factor PSW showed a similar effect size
(F = 113.6, p < 0.001) compared to the factor source
signal (F = 97.2, p < 0.001). In Experiment B (right
panel), it can be seen that ASW increases as well with
PSW in a similar manner to Experiment A. Small differ-
ences are present between the source signals, such that
the noise source is perceived generally with larger ASW
compared to speech and guitar. In a statistical analysis
with a mixed model the factor PSW showed a dominat-
ing effect size (F = 114.8, p < 0.001) compared to the
non-significant factor source signal (F = 3.9, p = 0.06).

Figure 1: Sketch of the experimental set-up. The loud-
speaker pairs generate a phantom source at 0 degree. Lis-
teners were asked to indicate the ASW in degree, for both
boundaries of the source image.

The ASW model

Binaural recordings were obtained with a head and torso
simulator (HATS) that was placed at the listener’s po-
sition. The functional model consisted of various pro-
cessing stages, including gammatone filtering, inner hair-
cell transduction (IHC) and absolute threshold of hearing
(ATH). Given the binaural signal, the model extracted
ITDs, ILDs and IC, in order to predict ASW.

Front-end

The auditory processing was based on the auditory-front-
end (AFE) developed by the TWO!EARS consortium
[12]. The binaural signals were first analyzed by a gam-
matone filterbank to represent the frequency selectivity
of the basilar membrane. The 39 filters were set to a
bandwidth of 1 equivalent rectangular bandwidth (ERB)
in the frequency range between 80 to 20000 Hz. In the
second stage, IHC transduction was simulated, i.e. the
loss of phase locking to the stimulus’ fine structure at
high frequencies. The IHC processing was performed
according to Bernstein et al. (1999) [2], suggesting a
cut-off frequency of 425 Hz and also simulating basilar
membrane compression. In a following stage, the activity
in each frequency band was estimated. The signals had
been calibrated to a root-mean-square (RMS) value cor-
responding to the 70 dB SPL of the experimental stimuli.
Frequency bands below the ATH as defined in Terhardt
(1979) [11] were excluded from further processing. In the
last stage, ITDs, ILDs and ICs were calculated per time-
frequency units. The signals of both ears were analysed
in short time hanning windows of 20 ms duration with an
overlap of 50 % which resulted in a time-frequency rep-
resentation of each ear signal. The IC and ITD were ex-
tracted from the normalised interaural cross-correlation
function per time-frame. The IC was equal to the maxi-
mal coherence and the ITD corresponded to the time-lag
at this value. Time-lags were limited to a range of ±1.1
ms. The ILDs were defined as the energy difference in
dB between the two ear signals.

Back-end

In the model’s back-end the ASW estimation was based
on the variability of the binaural cues that increases due
to increasing room reflections which is leading to a larger
ASW accordingly. The variability of binaural cues was
estimated by percentiles, capturing the width of the cue’s
statistical distribution, where the 20 % percentile corre-
sponded to the left most boundary and the 80 % per-
centile to the right most boundary of the sound source.
The first back-end, termed DUPLEX, combined ITDs
and ILDs according to the duplex theory [8] motivated
by Blauert and Lindemann and Mason et al.. The time-
frequency representations of ITDs and ILDs were used
to estimate their fluctuations in each frequency band,
separately. In order to combine ITDs and ILDs, the cor-
responding binaural cues were normalized to the overall
maximal value observed for the presented stimuli in the
chosen percentiles, i.e. 1.1 ms for ITDs and 12 dB SPL
for ILDs. ITDs and ILDs were combined across frequency
in accordance with the duplex theory using ITDs up to
1.5 kHz and ILDs above this frequency limit. The final
ASW prediction was then obtained by calculating the
mean value across all frequency channels. In a second
back-end, termed ITDlow, only the ITD-percentiles were
analysed with a upper frequency limit of 2 kHz accord-
ing to van Dorp Schuitman. The third back-end used the
IC for the ASW prediction, termed ICE3, resembling a
short-term analysis of IACCE3. In total 16 gammatone
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filters of the freont-end were selected corresponding to
the frequency range between 0.35 to 2.83 kHz defined by
the octave wide filters in IACCE3 at 0.5, 1 and 2 kHz.
The frame-based values of IC were averaged with equal
weights across all frames and frequency channels. As a
reference model dealt the IACCE3 according to Okano et
al. in a long-term analysis.

Calibration of the model

A calibration stage was required in order to map the
output of the model to ASW in degrees. A linear fit-
ting approach was chosen here that allowed for a sen-
sitivity parameter a and an offset b such that the cal-
ibrated model output was ycal = ay + b, where y rep-
resents the uncalibrated model output. The calibration
was performed using two data points measured with the
white noise stimulus of Experiment A for PSW #1 and
PSW #5.

Modeling results and discussion

The individual model performance was accessed by calcu-
lating Pearson’s correlation coefficient r2 and the RMS-
error between the calibrated model outputs and all ex-
perimental data, i.e. for Experiment A and B together
including all source signals and conditions. The corre-
sponding values are displayed in Table 1. In general, all
models provide a very high correlation with the percep-
tual data (ranging from r2 = 0.8 to r2 = 0.97). This is
due to the fact that PSW is the dominating factor com-
pared to the source stimulus which is captured correctly
by all models. Analysing r2 across source signals for sin-
gle PSW values did not show any differences between the
models’ performance.

Table 1: Model performances in terms of correlation coeffi-
cient r2, r and the RMS-error.

Model r2 r RMS-error [◦]

IACCE3 0.97 0.98 3.87
ICE3 0.91 0.95 10.5
ICfull 0.86 0.93 15.87
ITDlow 0.90 0.95 10.7
ITDfull 0.80 0.89 16.93
DUPLEX 0.89 0.94 11.25

In Figure 3, the outputs of the four tested models,
IACCE3, ICE3, ITDlow and DUPLEX are presented
for Expermient A (left panels) and for Experiment
B (right panels). Note that the first two models are
inversive proportional to ASW and are therefore shown
as 1 − IACCE3 and 1 − ICE3, respectively. Further,
both models produced a single output value and are
therefore plotted with a symmetric ASW. It can be
seen that all models are able to predict the general
trend of the data, i.e. that the perceived ASW increases
with PSW. Differences occur mainly in the slopes of
the predicted boundaries of ASW and between source
signals. The IACCE3 is shown on the top panels of
Figure 3. The model achieves the highest correlation of
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Figure 2: Perceptual results of ASW for Experiment A (left
panel) and Experiment B (right panel) in degrees. ASW is
shown as a function of the physical source width (PSW),
denoted by PSW #1 (narrow) to #5 (wide). Plotted are
the mean and standard deviation. The different symbols and
linestyles represent the different source signals.
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Figure 3: Modeling results of ASW for Experiment A (left
panels) and Experiment B (right panels) in degrees. From top
to bottom: 1−IACCE3, 1−ICE3, ITDlow and DUPLEX. ASW
is shown as a function of the physical source width (PSW),
denoted by PSW #1 (narrow) to #5 (wide). The different
symbols and linestyles represent the different source signals.

the considered models with r2 = 0.97 (r = 0.98 which
is identical to findings in [13]) due to the fact that it
captures correctly the dynamic range in ASW, i.e. the
difference between smallest and largest ASW, for both
Experiments. However, the model does not capture the
increase in ASW for PSW #5 in Experiment B (right
top panel) and does only reveal minor differences in the
source signals. Considering the model denoted by ICE3,
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the performance decreases to r2 = 0.91. This indicates
that a short-term analysis of IC and a higher frequency
resolution (16 gammatone filters as opposed to 3 octave-
wide filters in IACCE3) are not required to predict the
perceptual data considered in this study. Its output is
shown in the second row of Figure 3 and it becomes
prominent that this model has a reduced sensitivity,
i.e. a more shallow slope of the boundaries. It captures
minor source signal differences which however are
contradicting the data. The ITDlow model is shown in
the third row of Figure 3. Note that the model output is
more asymmetric due to the fact that the boundaries are
estimated separately by the corresponding percentiles.
Its performance is with r2 = 0.90 similar to the ICE3

model. Since both models, ICE3 and ITDlow are based
on the IACC this result is reasonable. The output of
the ITD model deviates though from the ICE3 model.
Prediction errors are here found due to the models
asymmetric output (potentially caused by asymmtric
HATS positioning) and an overestimation in case of the
speech and guitar source signal in Experiment B (right
panel in the third row) for low PSW values. In Table
1, the performance of both models is shown as well
when including the entire bandwidth for the analsyis,
i.e. including envelope information. The models are
denoted as ICfull and ITDfull and show with r2 = 0.86
and r2 = 0.80, respectively, a decreased performance
compared to their low frequency estimates. This sug-
gests that high frequency components in IACC-based
measures do not provide useful information for ASW.
The DUPLEX model, shown on the bottom of Figure
3 provides an identical output and performance as the
ITDlow model. Therefore, adding ILDs in the analysis
did not provide a further benefit. An analysis of the ILD
percentiles showed that the used stimuli provided a small
dynamic range of ILD fluctuations, i.e. the difference
for PSW #1 and PSW #5, was less than 1 dB. This is
small considering that the average fluctuations of ILDs
were around 4 to 5 dB and maxima occurred at 12 dB.
Even though the usage of ILDs in the analysis cannot be
justified for the considered stationary stimuli (even for
the speech and music signal the variations across PSW
were small), ILDs might provide a larger dynamic range
in real rooms and hence might become more relevant for
the ASW estimation.

Summary and conclusions

In this study, two experiments have been presented where
the ASW has been measured as a function of the PSW.
The stimuli were also analysed by four binaural func-
tional models to predict ASW. Hereby, a model that com-
bines ITDs and ILDs according to the duplex theory has
been developed (DUPLEX) and compared to other ex-
isting approaches in literature, i.e. IACCE3, ICE3, and
ITDlow. Comparing model performances by means of r2

it can be concluded that (i) models based on the inter-
aural cross-correlation function, i.e. either extracting IC
or ITD, produce equivalent results for the estimation of
ASW. Hereby, the best performance was obtained by a

long-term analysis of the binaural signals with IACCE3.
(ii) The correlation-based models operate thereby in their
optimal frequency range and adding higher frequency
components, here envelope ICs or ITDs, deteriorated the
ASW estimation. (iii) The DUPLEX model including
also ILDs could not provide any further benefit in the
ASW estimation possibly due to the stationary charac-
ter of the chosen stimuli.
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