DAGA 2016 Aachen

A binaural demonstrator on a single board computer

Fabian Schlieper, Lukas Aspock, Michael Vorléander
Institute of Technical Acoustics, RWTH Aachen University, fabian.schlieper@rwth-aachen.de

Introduction

Digital signal processing (DSP) has become indispens-
able when recording, storing, transmitting and reproduc-
ing audio signals. Still, DSP hardware is expensive, may
require expert knowledge and is not always suitable for
generic filter prototyping.

Single-board computers (SBC) like the Raspberry Pi are
powerful small devices available at a low price. Standard
interfaces such as USB, Ethernet and even IS allow con-
necting arbitrary audio hardware — raising the idea to
use them for audio DSP.

We evaluated some of these computers on their ability
of real-time audio processing and developed a software
library that implements FIR signal convolution with the
fast overlap-save FFT method. This is the only mecha-
nism which can perform arbitrarily complicated filtering
and equalization in real-time [2]. In this paper we dis-
cuss the usage of Linux as operating system, the audio
driver stack, high-level operations such as binaural syn-
thesis and crosstalk cancellation for loudspeaker repro-
duction. Finally, we present performance benchmarks
and optimization.

Single-board computers

In the last years Single-board computers have become
popular not only for experts but also for hobbyists and
home users. The availability of various preconfigured op-
erating systems and large repository of compiled soft-
ware packages makes working with single-board com-
puters more convenient for these user groups. Single-
Board Computers usually include a system-on-a-chip
(SoC) which contains a general purpose processor, typi-
cally based on ARM-architectures. Compared to desktop
PCs and most laptops running on x64 architecture, ARM
uses a reduced instruction set making chips smaller and
more energy efficient. For multimedia applications ARM
processors feature a floating-point unit (FPU), that com-
putes up to eight single-precision operations with a single
instruction. Current ARM FPU named NEON is avail-
able on the Raspberry Pi Model 2 and 3. The NelO
project [5] provides some DSP relevant functions opti-
mzed for the ARM architecture

Soundcards

Most stereo soundcards just work plug-and-play and of-
fer good quality, such as the Behringer UCA 202 (SNR
of around 90 dB). We did not find any compatible USB
sound card with more than two channels. Some I?S sound
cards are available for popular boards, such as the Cir-
rus Audio Board for the Raspberry Pi 2 (figure 1). They
can run at lower block sizes than USB devices, thus with

826

Figure 1: The Raspberry Pi 2 with mounted Cirrus Audio
Card 24-bit DAC, 192kHz sampling rate, SNR 95 dB

lower audio latency. We found that most boards have suf-
ficient CPU power to process more than 2-channel data,
the bottleneck is audio input and output.

Audio Signal Processing on a SBC

Instead of using a dedicated digital signal processor, we
implemented a real-time audio processor in C++. Figure
3 drafts the whole system, with a possible analog audio
source or a network stream of audio data that is received
by the SBC. A web server allows to control all parameters
with any browser. Filters are stored on the SD-card and
the user can exchange them during runtime. Arch Linux
[6] operating system with special task scheduling config-
uration and JACK?2 [7] facilitate access to the sound card
with a delay less than 3 milliseconds. Figure 2 illustrates
the audio stack. Audio Processing Software

Audio Processing Software
JACK

Sound Card (ADC/DAC)

Figure 2: Overview of the linux audio layers in our DSP

task.
Web Server Audio Processing Software
Binaural Crosstalk
Rendering Cancellation
Remote
Control
Network Audio Audio Driver
“I Interface Streamer
Network
Stream Loudspeakers
or-
' Sound Card
Y

Analog

Source Headphones

Figure 3: Concept of the SBC in an audio-processing appli-
cation

Software real-time constraint

Linux Operating System is originally designed for high-
throughput (e.g. server applications). It requires special
scheduler configuration to reliably process real-time data
within a given deadline.

The audio driver splits the audio stream into blocks
of arbitrary length. Lower block sizes decrease the la-
tency, but due to shorter deadlines this requires a precise
scheduling. With block size of 48 samples at 48 KHz
sampling rate the latency of the task scheduler must be
lower than 1 ms. System calls (e.g. a write to the SD-
card) can take several milliseconds, which causes heav-
ily audible drop-outs of the audio stream. The Linux
RT patch [8] deals with this problem by making system
calls preemptable. Interrupt handlers from the kernel
and normal threads (such as the audio processing pro-
gram) will run in the same priority pool, and the pri-
ority for each interrupt handler and thread can set to
arbitrary values. In our DSP application, we give higher
priorities to USB/I?S interrupt, JACK and the DSP pro-
gram. The Linux RT patch also includes debugging tools
to trace long-blocking system calls, mostly caused by de-
vice drivers. Once a critical blocking driver is found, it
should be disabled. For example, let the system boot into
RAM and disable the SD-card module after booting.

Binaural rendering

The library can (besides FIR filtering for equalization)
synthesize a mono signal to a binaural signal. It uses
head-related tranfer functions (HRTFs) stored as DAFF
[3] for virtual sound spatialization. This allows 3D po-
sitioning of a virtual sound source when using head-
phones [1]. Users can control virtual sound source posi-
tion through the browser of their smart phone (see figure
4).

In general, the concept of creating binaural sounds can
be applied in several different fields, ranging from musical
projects over acoustic virtual environments to creating
spatial audio tracks for movies. An interesting applica-
tion is the virtualization of a loudspeaker setup, to listen
to or create multichannel mixes.

© Init

| stop

Elevation

10‘

Figure 4: Web interface of the cross talk cancellation to
setup loudspeaker positions and listener position.

Crosstalk cancellation

A static crosstalk cancellation (CTC) [4] improves chan-
nel separation for reproduction on loudspeakers. Filters
are computed on the SBC. Users can adjust the CTC

DAGA 2016 Aachen

parameters of the loudspeaker array and the listener po-
sition (see figure 5).

Head Phi

Numeric
Input

X

L

Figure 5: Web interface of the binaural synthesis to control
the virtual source position.

More applications

Obviously a SBC can be used for loudspeaker equaliza-
tion. With wireless network streaming capabilities it
can be integrated into a loudspeaker enclosure to cre-
ate a wireless loudspeaker management (assuming proper
time synchronization between multiple SBC). We imple-
mented the binaural synthesis and crosstalk cancellation
for demonstration purposes. Considering more use cases,
the generic software implementation and the low hard-
ware costs make the system a universal prototype.

Performance

In this real-time task we measured two performance char-
acteristics: throughput (e.g. max. filter-length the sys-
tem can process in limited time, see figure 6) and latency
(the time a sound signal requires to pass through the sys-
tem, see figure 7). Table 1 shows the maximum possible
filter length at a given block size, comparing Raspberry
Pi 1 and Odroid X2.

We tuned the FFT-based convolution by exploiting some
of the SIMD (Single Instruction, Multiple Data) features
of ARM. The computational cost of the real-time convo-
lution depends at least on the filter length and the block
size — therefore its always a trade-off between filter length
and lower latency. Operating at 96 kHz sample rate, the
system can process with very low latency (3 ms).

Table 1: Performance limits of the convolution

. Max. FIR filter length
Block Size Raspberry Pi 1 Odriid X2
64 1024 -
96 2048 20k
128 4096 30k
256 12k 80k
Conclusion

Single-chip computers are a generic alternative to
dedicated DSP hardware, although compatible audio

DAGA 2016 Aachen

100 ‘ =FiT US8 sourd [7] JACK Audio Connection Kit, URL:
P, oun:
sl Pi1; 125, SIMD opt. http://www. jackaudio.org/
~Pi2, 128, SIMD opt.

[8] Real-Time Linux Wiki, URL:
https://rt.wiki.kernel.org/

CPU load / %
N o
S <]

n
o
T

16 32 48 64 96128 256 512 1024 2048
Block size / samples

Figure 6: CPU load at block sizes, const. filter length of

1024 samples at 44.1 kHz sampling rate. Raspberry Pil/2,

USB or I?S sound card, SIMD optimizations on/off. At CPU

loads close to 100 % the system fails to process in time and

outputs distorted audio.

80 7

401 .

Latency / ms
= N
o

wh o ®o
T
I

~USB (UCA 202)
| -Is

I I
32 48 64 96 128 256 512
Block size / samples

Figure 7: Total DAC/ADC latency at block sizes (using a
buffer size of 3 blocks) at 44.1 kHz sampling rate

hardware with more than two channels is currently
rare. With new boards and increasing compatibility
to hardware — especially due to improvements in the
Linux kernel — they become even more suitable for
real-time audio processing. Networking capabilities
enable wireless transmission of the audio data.

Setting the SBC up for a stable real-time convolution
requires a lot of system configuration and optimizations,
otherwise it will not work reliable (drop-outs may occur).
Of course one can always increase the block size, but
this causes higher latency.

References

[1] B. S. Masiero, Binaural technology for virtual reality,
RWTH Aachen University, 2008

[2] D. McGrath and A. Reilly, ”Huron - A digital Audio
Convolution Workstation” 1995

[3] F. Wefers, ”OpenDAFF - Ein freies quell-offenes
Software-Paket fiir richtungsabhéngige Audiodaten”
Proceedings of DAGA Berlin, 2010

[4] B. S. Atal and M. R. Schroeder, ” Apparent sound
source translator”. Patent US3236949 A, 1966

[5] NelO project, ARM optimized library, URL:
http://projectnelO.github.io/Nel0/

[6] Arch Linux, URL:
http://www.archlinux.org/

828

