
Software Design for Interactive Room Acoustic Simulation

Samuel Clapp, Manuel G. Hornung, Sebastian Pods, and Bernhard U. Seeber
Audio Information Processing, Technical University of Munich, 80290 Munich, samuel.clapp@tum.de

Introduction
In the Audio Information Processing Group at the Technical
University of Munich, the Simulated Open Field
Environment (SOFE) is employed for simulating, rendering,
and presenting room acoustical environments to listeners for
psychoacoustic research [1]. Room acoustics are simulated
using the Image Source Method and rendered for playback
to a horizontal ring of 96 loudspeakers. Each image source
is rendered to the nearest loudspeaker, and image sources
outside the azimuthal plane can be rendered either to the
loudspeaker of the same azimuth, or to the one which lies on
the same cone of confusion as the elevated source.

The next generation of SOFE, known as the Real-Time
Simulated Open Field Environment (rtSOFE), is currently
being developed. The hardware is installed in a newly
constructed anechoic chamber measuring 4 x 6 x 10 meters,
with an array of 60 loudspeakers: 36 in the azimuthal plane,
as well as rings of 12 below and 12 above the azimuthal
plane. In addition, new software has been developed
allowing for the presentation of dynamic acoustic scenes
with which listeners can interact.

System Goals
The principal use of the system is for conducting
psychoacoustic research with normal-hearing and hearing-
impaired listeners, as well as cochlear implant users. The
goal is to bring more “life-like” listening scenarios into the
laboratory. Auditory perception in these scenarios can then
be studied in a controlled manner, which is difficult to
accomplish in field studies.

Psychoacoustic tests are often relatively passive exercises
for test subjects, where they are presented with stimuli, and
then asked for a response. However, this is not how we
normally navigate the real world. We move through our
environment, interact with it, and attempt to control those
aspects which we are able. Thus, we desire a system that can
incorporate changes to the acoustic environment in real time
with low latency, and offer an accurate and convincing
simulation of the movement of both sound sources and
receivers.

Listeners also sometimes act, themselves, as the sound
source. The most common example is speaking, either as a
monologue (i.e. a teacher in classroom) or in dialogue (i.e.
conversing with others in a restaurant). The sound can also
be musical, either singing or with an instrument. Finally,
some listeners (especially those who are blind) employ a
strategy of echolocation by emitting short clicks and
listening to the signal returned by the environment to glean
information about the positions of walls and objects. So, the
system should also be able to handle real-time sound input
from test subjects with low latency.

Technical Requirements
The most important requirement for the system is a high
degree of physical accuracy. The simulated environments
should accurately represent the acoustics that would be
found in a real environment of the same design. The system
needs to be both real-time (sound samples are processed and
output at the same rate at which they come in) and low-
latency (as short a delay as possible between when changes
to the simulation are detected, and when the output reflects
those changes). The real-time and low-latency requirements
are important for establishing a sense of realism, and for
ensuring that participants behave normally in the simulated
scenarios, without artificially slowing down their
movements if they sense that the system cannot keep up with
rapid changes. Satisfying all of these requirements is
important so that results obtained in laboratory experiments
have validity in “real world” scenarios.

The system should be able to simulate not just rectangular
rooms, but rooms of arbitrary geometries, including slanted
walls, protruding elements, and objects inside the room. It
should also be able to handle impulse responses of up to 3
seconds (typical for some larger spaces like concert halls and
churches) at 44.1 kHz on 60 independent channels.

This system thus requires two main components. The first is
a fast method for generating highly accurate room impulse
responses for simulated rooms, which can respond quickly to
changes in input parameters. The second is a real-time
convolution engine with low input/output latency and the
ability to transition smoothly between different impulse
responses to offer a convincing and realistic presentation of
source and receiver movement.

System Architecture
Based on the development of previous generations of SOFE,
a modular architecture has been employed for the
organization of the system as a whole. Each component of
the system can be run on its own dedicated PC, including
one for the room simulation, and one for the real-time
convolution and output. The system components can then
communicate using standard networking protocols (UDP and
TCP).

Room Acoustics Simulation
Computational Method

The Image Source Method (ISM) is used, where the position
of the sound source is repeatedly mirrored over the room
boundaries to determine the temporal and spatial information
of the room reflections [2]. The system uses ISM up to high
orders (often up to 50-200 depending on the size of the room
and reflectivity of its surfaces), with the lower orders
representing early reflections and the higher orders

DAGA 2017 Kiel

267

representing the late reverberation (via the high temporal
density and wide spatial distribution of higher-order image
sources). A temporal jitter of 5-10% is applied to higher-
order image sources to avoid the spectral coloration resulting
from a highly regularized geometrical pattern of image
sources [1].

For a rectangular room, one can calculate the positions of
image sources up to an arbitrarily high order via spatially
repeating patterns [2]. However, for non-rectangular rooms,
a visibility test is required to determine if each reflection
reaches the receiver [3].

In the ISM, first-order image sources (i.e. those representing
a single wall reflection from source to receiver) are
calculated by reflecting the original sound source location
over all of the room boundaries. Second-order image sources
are then calculated by reflecting the first-order image
sources over the room boundaries, and so on. Thus, each
image source spawns a new set of image sources of one
order higher. This process can be thought of as generating
“trees” of image sources that grow exponentially with
increasing order.

Such a simulation could be allowed to run forever, and thus
a stopping criterion is required. The following stopping
criteria can be applied [1]:

- Maximum order: how many times an image
source can be reflected over the room boundaries

- Attenuation: as image sources lose energy with
each successive reflection, as well as increasing
distance from the receiver, one can define a
threshold in dB below which sources will no longer
be calculated

- Maximum number of sources: the total number of
image sources calculated

- Maximum distance: the maximum distance an
image source can be located from the receiver;
divided by the speed of sound, this yields the
maximum time for the length of the impulse
response

- Number of invisible parents: invisible image
sources can still spawn visible ones of higher
orders. However, a branch with many invisible
sources is often unlikely to yield more visible
sources further down the line, so employing this as
a stopping criterion can save memory and
computation time.

At a minimum, one of these criteria must be set by the user
to run the simulation. However, multiple stopping criteria
can be specified, with the most conservative one taking
precedence during run-time.

Computational Efficiency

Several methods were employed to increase the computa-
tional efficiency of the simulation, to reach the fast computa-
tion times desired for our real-time applications. OpenMP,
an open-source toolbox for parallelization, was used to dis-
tribute the computational load over multiple threads [4]. The

ISM computations are well-suited to parallelization, since
the calculation of each new image source is only based on
the parent source. Depending on which stopping criteria are
specified, different branches of the image source “tree” may
end at different orders. Therefore, the computational work-
load is redistributed amongst the threads after each order has
been calculated.

One performance bottleneck for ISM simulations for arbi-
trary room geometries is the visibility test. The traditional
way to compute this is to calculate a cross-product, which
requires six multiplications per vertex of the room surface in
question. However, in this implementation, the PNPOLY al-
gorithm was used, which only requires one multiplication
and one division per vertex, saving computation time on this
step [5, 6].

Finally, the simulation can be run in “merger” mode, where
two different instances of the simulation with different pa-
rameters are run simultaneously, with the calculated impulse
responses merged at the output. This allows for running the
simulation with the early part of the impulse response being
re-calculated at a higher update rate (where small changes in
source and receiver positions are more audible) and the later
part of the impulse response at a lower rate, for instance, to
save on computational load, but still deliver a perceptually
valid simulation. This modularity will also allow the system
to incorporate other methods in the future, such as wave-
based or stochastic simulation methods.

Performance Evaluation

The performance of the room simulation software was evalu-
ated using a geometric model of a seminar room at the Tech-
nical University of Munich [7]. The room model contained
24 surfaces. Performance was evaluated with calculations of
different image source orders on an Intel Core i7 desktop PC
with different numbers of threads. In all cases, the room sim-
ulation was constantly receiving updates, so whenever one
simulation finished, a new one began immediately.

Results are shown in Table 1, and given in number of
sources calculated per millisecond. Orders 3, 5, and 8 were
examined, resulting in 1k, 80k, and 63M sources, respec-
tively.

For the simplest calculations (order 3), a single thread actu-
ally performs the best, while the benefits of more threads are
realized at higher orders. When the total number of image
sources is in the tens of the thousands, the four- and eight-
thread simulations exhibit similar performance. The eight-
thread simulation shows a benefit compared to the others
when simulating a very high number of image sources, in the
millions.

Table 1: Desktop PC, “coarse” model

Threads ISM order (Number of sources)
3 (1k) 5 (80k) 8 (63M)

1 8912 18400 15750
4 8267 34480 27720
8 6933 35040 36540

DAGA 2017 Kiel

268

Real-Time Convolution

Computational Method

The second important component of this system is a real-
time convolution engine. One possible implementation for
real-time convolution is the direct-form implementation of a
finite impulse response (FIR) filter. The benefit of this ap-
proach is low input/output latency, as it can be computed on
a sample-by-sample basis. The disadvantage is that it is not
very efficient for long impulse responses. One of the goals
of this system was that it could be used for impulse re-
sponses up to 3 seconds, and at a sampling frequency of 44.1
kHz, which would yield a filter of over 130,000 taps.

Convolution can also be computed in the frequency domain,
using point-by-point multiplication. This is a much more
efficient computational process, especially for long impulse
responses. However, the main drawback is that a block of
samples is required before the processing can take place,
leader to higher input/output latency.

The method employed here is based on one first proposed by
Gardner [8]. The first part of the impulse response is
convolved using direct-form filtering. This allows the system
to accumulate enough input samples to then apply
frequency-domain convolution for the later part of the
impulse response, while maintaining a low input/output
latency. The frequency-domain convolution is achieved
using blocks of samples, with the first blocks after the direct-
form portion containing half of the samples used in the
direct-form filter. The size of the blocks used for the
frequency-domain convolution can increase for later sections
of the impulse response, leveraging the efficiency gains of
larger block sizes while maintaining a low input/output
latency.

One other important requirement for our system is that it can
switch smoothly between different room impulse responses.
To accomplish this, the program must convolve the relevant
input samples with two different impulse responses
simultaneously – the “old” one and the “new” one. Then, the
output signals are cross-faded to achieve a smooth transition.
Thus, the system requires sufficient processing overhead
from the “default” status with a single impulse response, as
it may be called upon to process twice as many samples any
time a new impulse response is received.

Computational Efficiency

The calculations of the forward and inverse Fourier
Transforms needed for executing the frequency-domain
convolution are accomplished using the FFTW library,
which has been shown to have excellent performance in this
task[9]. The complex multiplication (used to convolve the
signals in the frequency domain) is accomplished using the
Intel Advanced Vector Extensions (AVX), available on the
most recent Intel processors, which also significantly
reduces computation time for this step [10]. Parallelization
was achieved by assigning the different portions of the
impulse response (direct-form filter and the three FFT block
sizes) to different threads running on different processor
cores.

Performance Evaluation

System performance was evaluated on an Intel Core i7
desktop PC [11]. The convolver was given 64-channel
impulse responses of 3 seconds in length at a sampling
frequency of 44.1 kHz. The length of the callback function
was set at 32 samples, and a new impulse response was
given to the convolver at every callback.

The partitioning scheme used a 512-tap filter for the direct-
form convolution, and frequency domain block sizes of 256,
1024, and 4096 samples (with 6, 6, and 31 blocks,
respectively).

The results are shown in Table 2. The performance of each
portion of the impulse response was analyzed separately,
with average and maximum processing times given for each
section. Processing times using this partitioning scheme
were found to be well within the requirements. Thus, this
real-time convolution engine meets the goal of simultaneous
convolution of 60 channels with 3-second, dynamically
updated impulse responses and low input/output latency.

Table 2: Convolution performance

Filter Portion
FIR FFT 1 FFT 2 FFT 3

I/O Samples 32 128 512 2048
Avg. Exec. Time 330 µs 2,5 ms 10 ms 40 ms
Max. Exec. Time 420 µs 5 ms 13 ms 55 ms
Available Time 726 µs 6 ms 23 ms 93 ms

Full System
The full system, of which a schematic diagram is shown in
Figure 1, can be controlled via a single script written in
Matlab, Python, or any other programming
language/framework that can send UDP messages. At
startup, this script can send initialization commands (via
UDP) to the room simulation software to set the room
geometry, simulation parameters, and angular positions of
the rendering loudspeakers. Initialization commands sent to
the real-time convolution software include the maximum
length of the impulse response, the partitioning scheme, the
length of the callback, number of loudspeaker channels, and
the length of the crossover between impulse responses.

These software components also receive UDP messages
from the control script at run-time. The room simulation
software can receive new source and receiver positions,
while the convolution engine receives control commands for
the audio stream, such as starting, stopping, and changing
the source of the audio.

The final communication component is the impulse
responses, one per loudspeaker channel, that are sent from
the room simulation to the convolution software. This
communication occurs via TCP, which includes an extra
“handshake” to ensure the accuracy of the transmitted data.

DAGA 2017 Kiel

269

Figure 1: Full system schematic diagram

Conclusion
This paper described the design of software for rtSOFE, the
newest iteration of the Simulated Open-Field Environment
[1]. This system can simulate virtual, interactive acoustic
environments in real-time at low latency. These
environments can be employed for psychoacoustic research
with normal-hearing and hearing-impaired listeners and
cochlear implant users.

Acknowledgements
This work was supported by the Bernstein Center for
Computational Neuroscience Munich, BMBF 01 GQ 1004B.
Manuel G. Hornung contributed the design, coding, and
performance evaluation of the room simulation software for
his Master’s Thesis, and Sebastian Pods contributed the
same for the real-time convolution software for his
Bachelor’s Thesis, in the Audio Information Processing
group at the Technical University of Munich.

References
[1] B. U. Seeber, S. Kerber, and E. R. Hafter, “A System to

Simulate and Reproduce Audio-Visual Environments
for Spatial Hearing Research,” Hear. Res., vol. 260, no.
1–2, pp. 1–10, 2010.

[2] J. A. Allen and D. A. Berkley, “Image method for
efficiently simulating small-room acoustics,” J. Acoust.
Soc. Am., vol. 65, no. 4, pp. 943-950, 1979.

[3] J. Borish, “Extension of the image model to arbitrary
polyhedra,” J. Acoust. Soc. Am., vol. 75, no. 6, pp.
1827-1836, 1984.

[4] OpenMP application program interface 4.0, URL:
http://www.openmp.org/mp-documents/
OpenMP4.0.0.pdf

[5] PNPOLY – point inclusion in polygon test, URL:
http://www.ecse.rpi.edu/Homepages/wrf/
Research/Short_Notes/pnpoly.html

[6] A Quijada Gomariz, “Acoustics Simulation using
Graphics Hardware based on the Image Source Model,”
B.Sc. Thesis, T.U. Munich, 2014.

[7] M. G. Hornung, “Implementation and Optimization of
a Software Framework for interactive Room Acoustics
Simulation,” M.Sc. Thesis, T.U. Munich, 2015.

[8] W. G. Gardner, “Efficient Convolution without Input-
Output Delay,” J. Audio Eng. Soc., vol. 43, no. 3, pp.
127-136, 1995.

[9] FFTW Home Page, URL: http://www.fftw.org

[10] Intel Intrinsics Guide, URL: http://
software.intel.com/sites/landingpage/
IntrinsicsGuide/#

[11] S. Pods, “Echtzeit Faltung von mehrkanaligen
Impulsantworten,” B.Sc. Thesis, T.U. Munich, 2016.

DAGA 2017 Kiel

270

