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Introduction
In the Audio Information Processing Group at the Technical
University  of  Munich,  the  Simulated  Open  Field
Environment (SOFE) is employed for simulating, rendering,
and presenting room acoustical environments to listeners for
psychoacoustic research [1].  Room acoustics are simulated
using the Image Source Method and rendered for playback
to a horizontal ring of 96 loudspeakers.  Each image source
is  rendered  to  the nearest  loudspeaker,  and image sources
outside  the  azimuthal  plane  can  be  rendered  either  to  the
loudspeaker of the same azimuth, or to the one which lies on
the same cone of confusion as the elevated source.

The  next  generation  of  SOFE,  known  as  the  Real-Time
Simulated  Open Field  Environment  (rtSOFE),  is  currently
being  developed.  The  hardware  is  installed  in  a  newly
constructed anechoic chamber measuring 4 x 6 x 10 meters,
with an array of 60 loudspeakers: 36 in the azimuthal plane,
as  well  as  rings of 12 below and 12 above the azimuthal
plane.  In  addition,  new  software  has  been  developed
allowing  for  the  presentation  of  dynamic  acoustic  scenes
with which listeners can interact.

System Goals
The  principal  use  of  the  system  is  for  conducting
psychoacoustic  research  with  normal-hearing  and  hearing-
impaired  listeners,  as  well  as  cochlear  implant  users.  The
goal is to bring more “life-like” listening scenarios into the
laboratory. Auditory perception in these scenarios can then
be  studied  in  a  controlled  manner,  which  is  difficult  to
accomplish in field studies.

Psychoacoustic  tests  are  often  relatively  passive  exercises
for test subjects, where they are presented with stimuli, and
then  asked  for  a  response.  However,  this  is  not  how we
normally  navigate  the  real  world.  We  move  through  our
environment,  interact  with it,  and attempt to control  those
aspects which we are able. Thus, we desire a system that can
incorporate changes to the acoustic environment in real time
with  low  latency,  and  offer  an  accurate  and  convincing
simulation  of  the  movement  of  both  sound  sources  and
receivers.

Listeners  also  sometimes  act,  themselves,  as  the  sound
source.  The most common example is speaking, either as a
monologue (i.e. a teacher in classroom) or in dialogue (i.e.
conversing with others in a restaurant). The sound can also
be  musical,  either  singing  or  with  an  instrument.  Finally,
some  listeners  (especially  those  who  are  blind)  employ a
strategy  of  echolocation  by  emitting  short  clicks  and
listening to the signal returned by the environment to glean
information about the positions of walls and objects. So, the
system should also be able to handle real-time sound input
from test subjects with low latency.

Technical Requirements
The most  important  requirement  for  the  system is  a  high
degree  of  physical  accuracy.  The  simulated  environments
should  accurately  represent  the  acoustics  that  would  be
found in a real environment of the same design. The system
needs to be both real-time (sound samples are processed and
output  at  the  same rate  at  which  they come in)  and  low-
latency (as short a delay as possible between when changes
to the simulation are detected, and when the output reflects
those changes). The real-time and low-latency requirements
are  important  for  establishing a  sense  of  realism,  and  for
ensuring that participants behave normally in the simulated
scenarios,  without  artificially  slowing  down  their
movements if they sense that the system cannot keep up with
rapid  changes.  Satisfying  all  of  these  requirements  is
important so that results obtained in laboratory experiments
have validity in “real world” scenarios.

The system should be able to simulate not just rectangular
rooms, but rooms of arbitrary geometries, including slanted
walls, protruding elements, and objects inside the room. It
should also be able to handle impulse responses of up to 3
seconds (typical for some larger spaces like concert halls and
churches) at 44.1 kHz on 60 independent channels.

This system thus requires two main components. The first is
a fast method for generating highly accurate room impulse
responses for simulated rooms, which can respond quickly to
changes  in  input  parameters.   The  second  is  a  real-time
convolution  engine  with  low input/output  latency  and  the
ability  to  transition  smoothly  between  different  impulse
responses to offer a convincing and realistic presentation of
source and receiver movement.

System Architecture
Based on the development of previous generations of SOFE,
a  modular  architecture  has  been  employed  for  the
organization of the system as a whole. Each component of
the system can be run on its own dedicated PC, including
one  for  the  room  simulation,  and  one  for  the  real-time
convolution  and  output.  The system components  can  then
communicate using standard networking protocols (UDP and
TCP).

Room Acoustics Simulation
Computational Method

The Image Source Method (ISM) is used, where the position
of the sound source is  repeatedly mirrored  over the room
boundaries to determine the temporal and spatial information
of the room reflections [2]. The system uses ISM up to high
orders (often up to 50-200 depending on the size of the room
and  reflectivity  of  its  surfaces),  with  the  lower  orders
representing  early  reflections  and  the  higher  orders
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representing  the  late  reverberation  (via  the  high  temporal
density and wide spatial distribution of higher-order image
sources).  A temporal  jitter  of 5-10% is  applied to  higher-
order image sources to avoid the spectral coloration resulting
from  a  highly  regularized  geometrical  pattern  of  image
sources [1].

For a rectangular  room, one can calculate the positions of
image sources up to an arbitrarily high order  via spatially
repeating patterns [2]. However, for non-rectangular rooms,
a visibility  test  is  required  to  determine  if  each  reflection
reaches the receiver [3].

In the ISM, first-order image sources (i.e. those representing
a  single  wall  reflection  from  source  to  receiver)  are
calculated  by reflecting the original  sound source  location
over all of the room boundaries. Second-order image sources
are  then  calculated  by  reflecting  the  first-order  image
sources  over  the  room boundaries,  and  so on.  Thus,  each
image  source  spawns  a  new set  of  image  sources  of  one
order higher.  This process can be thought of as generating
“trees”  of  image  sources  that  grow  exponentially  with
increasing order.

Such a simulation could be allowed to run forever, and thus
a  stopping  criterion  is  required.  The  following  stopping
criteria can be applied [1]:

- Maximum  order:  how  many  times  an  image
source can be reflected over the room boundaries

- Attenuation:  as  image  sources  lose  energy  with
each  successive  reflection,  as  well  as  increasing
distance  from  the  receiver,  one  can  define  a
threshold in dB below which sources will no longer
be calculated

- Maximum number of sources: the total number of
image sources calculated

- Maximum  distance:  the  maximum  distance  an
image  source  can  be  located  from  the  receiver;
divided  by  the  speed  of  sound,  this  yields  the
maximum  time  for  the  length  of  the  impulse
response

- Number  of  invisible  parents:  invisible  image
sources  can  still  spawn  visible  ones  of  higher
orders.  However,  a  branch  with  many  invisible
sources  is  often  unlikely  to  yield  more  visible
sources further down the line, so employing this as
a  stopping  criterion  can  save  memory  and
computation time.

At a minimum, one of these criteria must be set by the user
to run the simulation.  However,  multiple stopping criteria
can  be  specified,  with  the  most  conservative  one  taking
precedence during run-time.

Computational Efficiency

Several  methods were  employed  to increase  the  computa-
tional efficiency of the simulation, to reach the fast computa-
tion times desired for our real-time applications.  OpenMP,
an open-source toolbox for parallelization, was used to dis-
tribute the computational load over multiple threads [4]. The

ISM  computations  are  well-suited  to  parallelization,  since
the calculation of each new image source is only based on
the parent source. Depending on which stopping criteria are
specified, different branches of the image source “tree” may
end at different orders. Therefore, the computational work-
load is redistributed amongst the threads after each order has
been calculated.

One performance bottleneck for  ISM simulations for  arbi-
trary room geometries  is  the visibility test. The traditional
way to compute this is to calculate a cross-product, which
requires six multiplications per vertex of the room surface in
question. However, in this implementation, the PNPOLY al-
gorithm was  used,  which  only requires  one  multiplication
and one division per vertex, saving computation time on this
step [5, 6].

Finally, the simulation can be run in “merger” mode, where
two different instances of the simulation with different pa-
rameters are run simultaneously, with the calculated impulse
responses merged at the output. This allows for running the
simulation with the early part of the impulse response being
re-calculated at a higher update rate (where small changes in
source and receiver positions are more audible) and the later
part of the impulse response at a lower rate, for instance, to
save on computational load, but still deliver a perceptually
valid simulation. This modularity will also allow the system
to incorporate  other  methods in  the future,  such as  wave-
based or stochastic simulation methods.

Performance Evaluation

The performance of the room simulation software was evalu-
ated using a geometric model of a seminar room at the Tech-
nical University of Munich [7]. The room model contained
24 surfaces. Performance was evaluated with calculations of
different image source orders on an Intel Core i7 desktop PC
with different numbers of threads. In all cases, the room sim-
ulation was constantly receiving updates, so whenever one
simulation finished, a new one began immediately.

Results  are  shown  in  Table  1,  and  given  in  number  of
sources calculated per millisecond. Orders 3, 5, and 8 were
examined,  resulting in  1k,  80k,  and  63M sources,  respec-
tively. 

For the simplest calculations (order 3), a single thread actu-
ally performs the best, while the benefits of more threads are
realized at higher orders. When the total number of image
sources is in the tens of the thousands, the four- and eight-
thread simulations exhibit  similar  performance.  The eight-
thread  simulation shows a  benefit  compared  to  the  others
when simulating a very high number of image sources, in the
millions.

Table 1: Desktop PC, “coarse” model

Threads ISM order (Number of sources)
3 (1k) 5 (80k) 8 (63M)

1 8912 18400 15750
4 8267 34480 27720
8 6933 35040 36540
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Real-Time Convolution

Computational Method

The second important component of this system is a real-
time convolution engine.  One possible implementation for
real-time convolution is the direct-form implementation of a
finite impulse response (FIR) filter. The benefit of this ap-
proach is low input/output latency, as it can be computed on
a sample-by-sample basis. The disadvantage is that it is not
very efficient for long impulse responses. One of the goals
of  this  system  was  that  it  could  be  used  for  impulse  re-
sponses up to 3 seconds, and at a sampling frequency of 44.1
kHz, which would yield a filter of over 130,000 taps.

Convolution can also be computed in the frequency domain,
using  point-by-point  multiplication.  This  is  a  much  more
efficient computational process, especially for long impulse
responses.  However,  the main drawback is that a block of
samples  is  required  before  the  processing  can  take  place,
leader to higher input/output latency.

The method employed here is based on one first proposed by
Gardner  [8].  The  first  part  of  the  impulse  response  is
convolved using direct-form filtering. This allows the system
to  accumulate  enough  input  samples  to  then  apply
frequency-domain  convolution  for  the  later  part  of  the
impulse  response,  while  maintaining  a  low  input/output
latency.  The  frequency-domain  convolution  is  achieved
using blocks of samples, with the first blocks after the direct-
form  portion  containing  half  of  the  samples  used  in  the
direct-form  filter.  The  size  of  the  blocks  used  for  the
frequency-domain convolution can increase for later sections
of the impulse response, leveraging the efficiency gains of
larger  block  sizes  while  maintaining  a  low  input/output
latency.

One other important requirement for our system is that it can
switch smoothly between different room impulse responses.
To accomplish this, the program must convolve the relevant
input  samples  with  two  different  impulse  responses
simultaneously – the “old” one and the “new” one. Then, the
output signals are cross-faded to achieve a smooth transition.
Thus,  the  system  requires  sufficient  processing  overhead
from the “default” status with a single impulse response, as
it may be called upon to process twice as many samples any
time a new impulse response is received.

Computational Efficiency

The  calculations  of  the  forward  and  inverse  Fourier
Transforms  needed  for  executing  the  frequency-domain
convolution  are  accomplished  using  the  FFTW  library,
which has been shown to have excellent performance in this
task[9].  The complex multiplication (used to convolve the
signals in the frequency domain) is accomplished using the
Intel Advanced Vector Extensions (AVX), available on the
most  recent  Intel  processors,  which  also  significantly
reduces computation time for this step [10]. Parallelization
was  achieved  by  assigning  the  different  portions  of  the
impulse response (direct-form filter and the three FFT block
sizes)  to  different  threads  running  on  different  processor
cores.

Performance Evaluation

System  performance  was  evaluated  on  an  Intel  Core  i7
desktop  PC  [11].  The  convolver  was  given  64-channel
impulse  responses  of  3  seconds  in  length  at  a  sampling
frequency of 44.1 kHz. The length of the callback function
was  set  at  32  samples,  and  a  new impulse  response  was
given to the convolver at every callback. 

The partitioning scheme used a 512-tap filter for the direct-
form convolution, and frequency domain block sizes of 256,
1024,  and  4096  samples  (with  6,  6,  and  31  blocks,
respectively).

The results are shown in Table 2. The performance of each
portion  of  the  impulse  response  was  analyzed  separately,
with average and maximum processing times given for each
section.  Processing  times  using  this  partitioning  scheme
were found to be well within the requirements.  Thus, this
real-time convolution engine meets the goal of simultaneous
convolution  of  60  channels  with  3-second,  dynamically
updated impulse responses and low input/output latency.

Table 2: Convolution performance

Filter Portion
FIR FFT 1 FFT 2 FFT 3

I/O Samples 32 128 512 2048
Avg. Exec. Time 330 µs 2,5 ms 10 ms 40 ms
Max. Exec. Time 420 µs 5 ms 13 ms 55 ms
Available Time 726 µs 6 ms 23 ms 93 ms

Full System
The full system, of which a schematic diagram is shown in
Figure  1,  can  be  controlled  via  a  single  script  written  in
Matlab,  Python,  or  any  other  programming
language/framework  that  can  send  UDP  messages.  At
startup,  this  script  can  send  initialization  commands  (via
UDP)  to  the  room  simulation  software  to  set  the  room
geometry,  simulation parameters,  and angular  positions of
the rendering loudspeakers. Initialization commands sent to
the  real-time  convolution  software  include  the  maximum
length of the impulse response, the partitioning scheme, the
length of the callback, number of loudspeaker channels, and
the length of the crossover between impulse responses.

These  software  components  also  receive  UDP  messages
from  the  control  script  at  run-time.  The  room simulation
software  can  receive  new  source  and  receiver  positions,
while the convolution engine receives control commands for
the audio stream, such as starting,  stopping,  and changing
the source of the audio.

The  final  communication  component  is  the  impulse
responses, one per loudspeaker channel, that are sent from
the  room  simulation  to  the  convolution  software.   This
communication  occurs  via  TCP,  which  includes  an  extra
“handshake” to ensure the accuracy of the transmitted data.
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Figure 1: Full system schematic diagram

Conclusion
This paper described the design of software for rtSOFE, the
newest iteration of the Simulated Open-Field Environment
[1].  This  system can  simulate  virtual,  interactive  acoustic
environments  in  real-time  at  low  latency.  These
environments can be employed for psychoacoustic research
with  normal-hearing  and  hearing-impaired  listeners  and
cochlear implant users.
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