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Introduction

Distributed spherical microphone arrays are frequently
used for large scale acoustic scene analysis, spatial sound
recordings, and room acoustic analysis. For all these appli-
cations the positions and orientations of the arrays must
be known; however, when the arrays are distributed over
a large area, measuring their positions is often infeasible
or cumbersome at best. Blind estimation of microphone
positions from the recorded signals, referred to as posi-
tion self-calibration, has been studied in [1, 2, 3], and
usually these methods rely on the estimated time differ-
ence of arrival (TDOA) of sound events picked up by the
microphones.

For some applications, e.g. room acoustic analysis, also
a floor plan of the recording venue needs to be available;
more generally, the positions and orientations of reflective
surfaces need to be known. Again, manually measuring
these room properties can be cumbersome and time con-
suming. The problem of estimating these properties from
recorded signals or room impulse responses is referred
to as geometry inference, and several solutions assuming
known microphone positions have been proposed [4, 5].
Methods for jointly solving the self-calibration and geom-
etry inference problem have been proposed in [6, 7].

In this paper we propose a practical solution to both
problems using distributed spherical microphone arrays
equipped with 4 cardioid microphones. The unknown
positions and orientations of the arrays as well as the
positions and orientations of reflective room boundaries
are estimated by recording several impulse-like sounds
(hand-claps) at arbitrary unknown positions. The pro-
posed approach is based on two sets of parameters: (i)
the estimated direction-of-arrivals (DOAs) of the direct
sounds and first-order reflections, and (ii) the TDOAs
between sound events picked up by different arrays (inter-
array TDOAs) as well as the TDOAs between the direct
sound and first-order reflections at each array (intra-array
TDOAs). From these parameters, we firstly estimate the
positions and orientations of the arrays as well as the
source positions using the direct sound events only; the
minimum number of microphone arrays and sources re-
quired is 2 and 3 for the 2-dimensional and 3-dimensional
case, respectively. Secondly, we estimate the positions
and orientations of room boundaries using the estimated
DOAs and TDOAs of first order reflections. The pro-
posed solution for the geometry inference problem can be
applied to arbitrary room geometries, however, here we
consider only rectangular ones.
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Figure 1: Visualization of signals from two different sources
(with reflections) arriving at two synchronized arrays, arrival
times are ti,j,r.

The performance of the proposed algorithm is evaluated
using measurement data from two different environments.

Signal Model and Notation

We model the signal of the j-th source (i.e. the j-th hand
clap) arriving at the i-th array as

yi,j(n) =

Nr∑
r=0

a(Ωi,j,r)xi,j,r(n) + vi(n), (1)

where xi,j,r(n) is a sound event (r = 0 refers to the direct
sound and r > 0 to the r-th reflection) and vi(n) the
measurement noise. a(Ωi,j,r) is a weighting depending
on the DOA Ω. With ti,j,0 denoting the time of arrival
of the direct sound of source j at array i, the inter-array
TDOA is defined as

Δti,j,0 = ti,j,r − tiref ,j,r, (2)

where iref is the index of the array that detected the first
direct sound arrival (see Figure 1).

Similarly, we define the intra-array TDOA Δti,j,r with
r > 0 as

Δti,j,r = ti,j,r − ti,j,0, (3)

where ti,j,r is the time of arrival of the r-th reflection of
the j-th source at array i.

By Ωi,j,r = (ϕi,j,r, ϑi,j,r) we denote the DOA of the r-th
sound event created by source j as observed by the i-th
array. Note that since the orientations of the arrays are
unknown, Ωi,j,r refers to the local coordinate system of
the i-th array.

The signal model is visualized in Figure 1, indicating
the times of arrival of sound events and possible signal
windows during which only the j-th source, as well as the
reference array iref for each source.
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Direction of Arrival Estimation

Many DOA estimators need a search over a large param-
eter space, for example steered response power (SRP) or
similar approaches. An efficient estimator is proposed in
[8], based on a direct weighting of the capsule look direc-
tions of a microphone array (fulfilling certain restrictions)
by the recorded spectrum.

An extension thereof is described in this section in form
of an alternative weighting using an eigendecomposition
of the array covariance matrix performed in the frequency
domain, computed as

R(k) = E
[
Y(k, n)YH(k, n)

]
= U(k)D(k)U(k)H . (4)

In upper equation E [·] denotes the expectation operator,
Y(k, n) the STFT of the array output y(n) and U(k)
and D(k) the eigenvector and eigenvalue matrices. As
estimate for the true covariance matrix R(k) the sam-

ple covariance matrix R̂(k,m) is used, computed over
a short signal window centered around a sample m at
frequency bin k. As alternative weighting of the capsule-
look-directions (in the columns of N) the eigenvector
ũ(k,m) corresponding to the largest eigenvalue λ̃(k,m)
is used.

This DOA estimation is performed separately for all mi-
crophone arrays, yielding a DOA vector

di,j(k,m) = N · |ũi,j(k,m)| (5)

at each time-frequency bin.

An instantaneous DOA estimate Ω̂i,j(m) at time m is
then found by computing a histogram over the azimuth
and elevation angles of all frequencies k of di,j(k,m) as

Hi,j(α, β,m) = histogram
ϕ,ϑ,k

di,j(k,m) (6)

and picking the angular direction of the maximum in the
histogram as final DOA estimate

Ω̂i,j(m) = argmax
α,β

Hi,j(α, β,m). (7)

α and β are the angles of the histogram bins.

Time of Arrival Estimation

For TOA estimation the broadband character of the cali-
bration signals can be exploited by performing peak pick-
ing over time of the largest eigenvalue λ̃i,j(k,m) at each
frequency. This results in Np possible TOAs according to

ti,j,p(k) = PP
Np

r=1

[
λ̃i,j(k,m)

]
(8)

where PPN
r=1 [x(n)] finds the locations n of the Np largest

peaks of x(n) (indexed by p). On these TOAs a histogram
is used to derive an RIR-like function

hi,j(m) = histogram
p,k

ti,j,p(k). (9)

Locations of maxima in hi,j(m) then indicate the time-
of-arrival ti,j,r of a broadband sound event r of source j
at microphone i.
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Figure 2: Example for self-calibration (a) and room inference
(b) with three sources j = {a, b, c}, two microphone arrays
i = {1, 2} and reflection points j′i of single reflector.

Self-calibration

For the self-calibration (described in two dimensions for
simplicity) only the direct sound DOAs and TOAs are
needed. As the orientation of each microphone array is
unknown, the DOAs of different direct sound events are
used as direction-differences-of-arrival (DDOAs, Δϕi,j),
referenced to the DOA of an arbitrary reference source.
Using these parameters, phasor systems containing all
sources in a local microphone coordinate system can be
constructed (shown in Figure 2a). The points of the
phasor systems are computed according to

zi = −(Δti,j,0 + τiref ,j) (10)

zi,j =
(
zi + (Δti,j,0 + τiref ,j) · eiΔϕi,j

) · eiφi (11)

where zi,j is the position of source j relative to microphone
point zi, φi are the unknown phasor system rotations
(due to the unknown rotation of each array) and τiref ,j
the unknown times sound travels from the j-th source to
the closest microphone iref . The optimal parameters for
τiref ,j and φi are found by minimizing the cost function

J(τiref ,j , φi) =

Nj∑
j=1

Ni∑
i=1

Ni∑
i′=1
i′ �=i

|zi,j − zi′,j | (12)

which implies minimizing the cumulative distances be-
tween all relative source estimates. We obtain the optimal
parameters using an iterative method: starting with a
random initialization, we keep τiref ,j fixed and find the
optimal φi using a simple line search. Then we keep φi

fixed and find the optimal τiref ,j by solving the now convex
problem. This procedure is repeated until convergence.

As the resulting points zi and zi,j are in complex coordi-
nates and have the unit seconds they have to be converted
to meters and Cartesian coordinates using

z = c · (Re [z] Im [z]
)T

(13)

where c is the speed of sound.

Geometry Inference

With the self-calibration results, the estimated DDOAs
and TDOAs of detected first order reflections, reflection
points can be computed using

rc +Δti,j,r = ra + rb (14)

r2b = r2a + r2c − 2rarc cosβ, (15)
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Figure 3: Reflection points, resulting room estimate and
self-calibration results. Estimated reflection points are drawn
as circles with size corresponding to weights indicating the
similarity of the DOA estimates over all frequencies.

with ra, rb and rc as the sides of a triangle and β as the
reflection DDOA Δϕi,j,r (all indicated in Figure 2b for an
exemplary reflection point). ra is the quantity of interest.
Inserting Eq. 14 into Eq. 15 results in

ra =
2rcΔti,j,r +Δt2i,j,r

2(rc +Δti,j,r)− 2rc cosβ
, (16)

which allows direct computation of first order reflection
points relative to the corresponding source-microphone
pairs. The computed reflection points need to be con-
verted using Equation 13 as well.

Using the point clouds consisting of all estimated reflec-
tion points (see Figure 3), different methods for estimating
corresponding arbitrary or rectangular room shapes can
be used for geometry inference. For arbitrary room shapes
the Hough transform (used in [6]) or a simple clustering
of the reflection points by the reflector angle can be used.
Rectangular room shapes can be found by fitting a rectan-
gle to the reflection points (for example using a modified

ellipse equation
(
x
a

)2η
+

(
y
b

)2η
= 1 with η ≥ 2) or by

projecting the points onto their principal components and
computing histograms. For the results presented here
we use a rectangular fit based on the modified ellipse
equation.

Results

The algorithm performance is evaluated using data from
two measurements, conducted in an absorptive measure-
ment room and a box shaped lecture hall. A panorama
view of the lecture hall can be seen in Figure 7, illus-
trating the microphone and calibration source positions
and the room edges. All calibration sources (hand-claps)
and microphones (B-format arrays) were located on the
same height at measured positions in both measurements.
The self-calibration results are evaluated as mean posi-
tion error εs and εr (in m) for source and microphone
positions and as mean absolute orientation error ερ (in
degrees) for the array orientations. Tables 1 and 2 show
the numerical results for the measurement room and the

Table 1: Self-calibration results for the measurement room.

rep.
Calibration Error

εs/m εr/m ερ/deg

1 0.1054 0.0949 3.78

2 0.1447 0.1037 5.06

3 0.0870 0.0597 2.55

4 0.0819 0.1230 2.55

5 0.2400 0.3521 9.30

6 0.3297 0.1468 5.12

comb. 0.0927 0.0831 1.21
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Figure 4: Self-calibration results for the measurement room,
microphone estimates are indicated by red squares, source
estimates by blue circles, the real positions by × and +. Rep-
etition results are indicated by grey squares and circles.

lecture hall for six repetitions (one repetition corresponds
to a single clap at every source position). For both scenes
the best case results for microphone and source positions
are below 10 cm. By combining all six measurements,
we achieve results below the average error, with the po-
sition error of the microphones significantly lower than
that of the calibration sources (the rows labelled comb.).
The combination is achieved by optimally aligning all
self-calibration results to a chosen result. The plots for
these combined results are shown in Figures 4 and 5. The
microphone orientations are indicated as lines in the esti-
mated direction, the real orientation was in direction of
the positive y-axis.

The numerical results for the room inference are shown in
Table 2 in the two rightmost columns as average distance
error εd and orientation error εa of the estimated to the
real walls. The combined results are again close to the best
case results of 8 cm distance and less than 1◦ orientation
error. For the combined results only repetitions 1 to 5
are used, as repetition 6 contributes all the large outliers
in the self-calibration results (see Figure 5).

Conclusion and Future Work

A complete solution for acoustic scene parameter esti-
mation is described, using simple ways to estimate the
most important parts (microphone positions and reflec-
tive boundary) of a scene. The proposed self-calibration
algorithm only needs a minimum number of microphones
and calibration sources, equal to the dimension of the
attempted scene map. The room inference procedure also
allows simple estimation of arbitrary geometries.
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Table 2: Calibration and inference results for the lecture hall.

rep.
Calibration Error Inference Error

εs/m εr/m ερ/deg εd/m εa/deg

1 0.1267 0.1318 2.80 0.1799 0.1

2 0.1674 0.1687 3.44 0.1744 2.14

3 0.2399 0.1327 1.81 0.0843 0.31

4 0.0874 0.1387 3.27 0.2136 0.81

5 0.1225 0.0962 3.43 0.1660 2.87

6 0.2042 0.3165 5.19 0.6134 8.17

comb. 0.1240 0.0907 2.99 0.1077 0.89
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Figure 5: Self-calibration results for the lecture room, micro-
phone estimates are indicated by red squares, source estimates
by blue circles, the real positions by × and + respectively.
Repetition results are indicated by grey squares and circles.

Work that still needs to be done is the evaluation of the
estimated scene in terms of beamforming algorithms for
localization or tracking of actual sources, as well as from
an auditory point of view by comparing a model to the
real counterpart. To simplify the calibration procedure it
is also interesting to examine the influence of positions and
numbers of calibration sources on the results, attempting
to minimize the effort.
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