Binaural masking level difference as a function of noise bandwidth and noise delay

Mathias DIETZ1; Kristin I BRACKLO1, Stephan D EWERT1

1Universität Oldenburg, Germany

ABSTRACT
The human binaural system can exploit differences between the interaural phase of a noise and a target tone to improve detection thresholds. The maximum masking release is obtained for detecting an antiphasic tone ($S\pi$) in diotic noise (N_0). It has been shown in several studies that this benefit gradually declines as an interaural time difference (ITD) is applied to the $N_0S\pi$ complex. This decline has been attributed to the reduced interaural coherence of the noise. Here, we report detection thresholds for a 500 Hz tone in masking noise with up to 8 ms ITD and bandwidths from 25 to 1000 Hz. When reducing the noise bandwidth from 100 to 50 and 25 Hz the masking release at 8 ms ITD increases, in part because the narrower bandwidths result in a higher coherence length. For bandwidths of 100 to 1000 Hz, however, no significant difference was observed, indicating that an auditory filter with a bandwidth <100 Hz is operational and produces identical coherence for this group. Thus, our coherence-based model requires an effective auditory filter bandwidth <100 Hz, in line with established monaural models but in contrast to delay line-based models for $N_0S\pi$ detection.

Keywords: Binaural, Interaural Time Difference, Interaural Coherence

ACKNOWLEDGEMENTS
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement n° 716800)