
 
PROCEEDINGS of the  
23rd International Congress on Acoustics  
 
9 to 13 September 2019 in Aachen, Germany

 
 

 

A clinical test battery for Better hEAring Rehabilitation (BEAR): 
Towards the prediction of individual auditory deficits and hearing-

aid benefit 
Raul H SANCHEZ-LOPEZ1, Silje Grini NIELSEN1, Oscar CAÑETE1, Michal FERECZKOWSKI1, 

Mengfan WU2, Tobias NEHER2, Torsten DAU1 & Sébastien SANTURETTE1,3. 
1 Hearing Systems Section, Dept. of Health Technology, Technical University of Denmark, Kgs. Lyngby, 

Denmark  

2 Institute of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark 
3 Oticon A/S, Smørum, Denmark 

ABSTRACT 
One aim of the Better hEAring Rehabilitation (BEAR) project is to define a new clinical profiling tool, a test 
battery, for individualized hearing loss characterization. Recently, Sanchez-Lopez et al. (2019) proposed a 
test battery that includes six types of measures: audibility, middle-ear analysis, speech perception, binaural-
processing abilities, loudness perception, and spectro-temporal resolution. The results of 75 listeners were 
analyzed using a data-driven approach (Sanchez-Lopez et al., 2018), which provided evidence for the 
existence of two independent sources of distortion and four different auditory profiles. The classification of 
the listeners into auditory profiles allows the prediction of the performance of the listeners on different 
psychoacoustic tasks as well as their expected aided speech intelligibility. For clinical practice, a decision 
tree with a small set of highly predictive tests is desirable for an efficient classification of hearing-impaired 
individuals. The main aim of the present study was to investigate the optimal decision tree and to propose a 
clinically feasible test battery with a minimum number of tests for accurate listener classification. The clinical 
test battery will be used in a large-scale field study that will help implement a hearing-aid fitting protocol for 
better hearing rehabilitation. 
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1 INTRODUCTION 
The Better hEAring Rehabilitation (BEAR) project pursues the development and implementation 

of new methods for the diagnosis of hearing deficits as well as new hearing-aid compensation 
strategies to improve hearing rehabilitation. Since digital hearing aids were introduced to the market, 
hearing-aid users have reported increased benefit (1), probably because of the advanced signal 
processing techniques (or features) that are now commonly available, such as directionality, noise 
reduction and dynamic range compression. However, the hearing-aid fitting is still based on the 
audiogram only which provides the basis for frequency-dependent gain prescription. The other 
features are adjusted based on preferences and not according to the individual auditory deficits of the 
user. Furthermore, in hearing care clinics it is common to “fine-tune” some hearing-aid parameters 
during follow-up visits (2). If the initial fitting is near-optimal, the follow-up visit may focus on 
individualization of the fitting parameters according to the “life-style” of the patient. However, if the 
initial fitting is far from optimal, the audiologist needs to tailor-fit hearing-aid parameters to the 
hearing deficits of the listener by “trial-and-error”. The BEAR project attempts to improve this 
situation by identifying groups of listeners – or “auditory profiles” – with specific performance 
patterns on a range of threshold and supra-threshold tasks and by providing tailored solutions with 
proposed dedicated hearing-aid compensation strategies for each auditory profile. 

 
In an attempt to identify the auditory profiles, Sanchez-Lopez et al. (3) hypothesized that the 

hearing deficits of a given listener can be described as the combination of two independent types of 
auditory distortions. The hypothesis was based on the idea that each type of distortion can cause both 
threshold and supra-threshold deficits and that these deficits are not necessarily independent. In Figure 
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1.a), the two types of distortions create a two-dimensional space where a given listener’s location is 
determined by the degree of severity of these distortions. As a result, the listener can be identified as 
belonging to a certain auditory profile. As shown in Figure 1, normal-hearing listeners are located at 
the bottom left-hand corner, exhibiting no distortions. Profile A corresponds to a group with minor 
distortions and therefore good performance in general. Profile C exhibits a high degree of both types 
of distortions. Profile B exhibits a high degree of distortion type I. Profile D shows a high deg ree of 
distortion type II. Using a data-driven approach (3), four auditory profiles were identified by analyzing 
the data from two previous studies, providing evidence for the validity of this approach. However, the 
substantial differences in terms of listeners and tests applied in these two studies limited the overall 
conclusions that could be drawn from this work. 

 

 
Figure 1 – Hypothesized auditory profiles together with the results of the data-driven profile identification. 

Left panel: The listeners are placed in a two-dimensional space along two dimensions of auditory 

distortion. Right panel: Using a data-driven analysis, listeners are placed in the two-dimensional space as a 

function of their probability of belonging to a specific profile. 
 
 

  In order to overcome the aforementioned limitations discussed in (3), a new test battery including 
a range of supra-threshold psychoacoustic tests was proposed and evaluated in 75 listeners with 
various types of audiometric configurations. Additionally, the test-retest reliability of the new test 
battery was investigated in a subset of 11 listeners (4). The dataset obtained in this manner will in the 
following be referred to as BEAR3. For the classification of the 75 listeners, unsupervised learning 
techniques were used to carry out iterative auditory profiling based on the data-driven approach (5). 
After this analysis, 70 of the 75 listeners were reliably identified as belonging to one of the four 
auditory profiles A-D and the remaining five listeners (shown in grey in Figure 1) were left 
unclassified. However, this iterative unsupervised method requires the entire dataset to identify the 
four groups and is therefore not suitable for the classification of new listeners. Decision trees are a 
well-known simple classification tool that may prove useful for classifying unseen data, i.e. new 
listeners. The efficacy of decision trees can be explored by evaluating their classification performance 
(6).  

 
When implementing a new protocol for diagnosing a specific disease in the clinic, it is crucial to 

evaluate its ability to correctly identify the patients who are affected by the health problem under 
consideration. In general, two types of errors can occur in this classification process: truly affected 
patients may be “missed” (false negatives) and healthy patients may be “misclassified” as being 
affected (false positives). Confusion matrices are typically used to quantify the test performance of a 
classifier. In addition to the classification performance, it is of interest to investigate the cost 
efficiency of a new clinical protocol (7) by estimating the cost of having false negatives or false 
positives as well as the benefit that the correct classification would provide. 

 
The goal of the current study was to develop a decision tree for a large field study to be conducted 

as part of the BEAR project, where listeners will have to be classified into the four hypothesized 
auditory profiles. It is also of interest to identify an additional group of unclassified listeners (Uc) 
who do not seem to belong to any of the four primary profiles. The BEAR3 dataset was used for 
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investigating the accuracy and efficiency of different decision trees. Using supervised learning 
techniques, different classification strategies were tested and evaluated in terms of both test 
performance and cost effectiveness. 

2 Methods 
Decision tree classifiers were trained for predicting the identified auditory profiles from (5) using 

supervised learning. The analysis of the cost efficiency was based on considerations made in the 
context of the aforementioned field study to be carried out in different hearing clinics. These 
considerations cover the recruitment of a random sample of 500 listeners where at least 60 listeners 
per profile are expected. 

 

2.1 Classification methods 
  The classification of the listeners into the four auditory profiles was performed using supervised 
learning with tests that showed good to excellent reliability as input, and the labels of the four auditory 
profiles as well as the unclassified group (Uc) as output. The classification algorithm used here was a 
standard classification and regression tree (CART), which makes use of recursive binary partitions in 
order to fit the data to the best set of binary decisions or splits (8). Four classification schemes were 
considered: 
 

 DTA: A simple classification based only on the audiogram. 
 DT10: A multi-label “fitted” classification. Decision tree based on all reliable tests and 10 

binary decisions. 
 DT7: A multi-label “pruned” classification with seven binary decisions.  
 DT4: A multi-label “pruned” classification with four binary decisions. 

 

 
Figure 2 – Top panel: The complete decision tree (DT10). Bottom panel: The four decision trees considered 

in the present study. DTA: Audiometry-based classifier, DT10: Same as in top panel; DT7: Decision tree 

with seven binary decisions (DT10 with three pruned splits), and DT4: Decision tree with four binary 

decisions (DT10 with six pruned splits). 
 
Figure 2 illustrates the complete classification tree (DT10). Each diamond (split) corresponds to a 

logic rule related to a given variable, for example HLHF > 45 dB HL. The right branch corresponds to 
poorer outcome and the left branch to better outcome. The details of the logic rules are not shown 
here. The decision trees DT7 and DT4 are the result of pruning the decision tree DT10 by discarding 
some of the nodes, as illustrated in the figure. 
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2.2 Test performance and cost-efficiency evaluation 
In order to evaluate both the classification performance and the cost efficiency, a dataset was 

created for bootstrapping. The original dataset was copied seven times which resulted in 525 
observations. Next, the specific standard error of the measurements (SEM) of each test (4) was used 
for introducing some uncertainty (additive Gaussian noise) in the outcomes to simulate the data from 
the aforementioned field study. Confusion matrixes were then calculated for 100 iterations and the 
cost-efficiency was estimated. 

 
The cost-efficiency was calculated based on (7) and adapted for the multi-label case. Consider a 

2x2 matrix of costs C. Following the previous assumptions, C00 is the cost of a true negative, i.e. a 
participant to be excluded from the study or correctly “not-classified” as a given profile. The cost C00 
would be equal to the session cost. C11 is the cost of a correct classification. C01 and C10 correspond 
to false positives and false negatives, respectively, which would introduce outliers in the final results. 
These would be equal to the cost of misclassification. Additionally, consider the matrix P with the 
probabilities of each of the previous cases, where P11 is the probability of correct classification, P00 
that of correct rejection, and P01 and P10 those of the two types of misclassification. The expected cost 
is the Hadamard product of the P and C matrixes: 

 
 (1) 

This generic expression can then be simplified due to the fact that the probability of belonging to 
a given class   not truly belonging to that group   is equal to 

. The index i denotes the predicted class and the index j the actual class. Therefore, 
the expression can be simplified to: 

(2) 

where  is defined as 

(3) 

 
Given that the probabilities can be calculated in terms of the specificity and sensitivity, Equation 2 
can be written as follows: 

 (4) 

Equation 4 provides the extension of the expected cost as defined in (7) but for the multi-class case. 
It was used here to calculate the expected cost for each iteration to estimate the final expected cost 
per session. 
 
2.2.1 Cost assumptions 

The following assumptions were made:  
 Test cost: Each additional test that is not part of current clinical practice incurs costs for 

the implementation, the training of the examiners and the documentation. Uus et al. (9) 
analyzed the costs of implementing a newborn screening program. The average set-up cost 
across 16 sites for implementing two tests was £665 for 1000 infants. Therefore, in the 
present study, a hypothetical total cost of $600 was considered for a field study that 
involves 500 listeners. The cost per new test per session would therefore be $1.2. 

 Session cost: The duration of the session has a cost that involves the salary of the examiner 
and the use of the facilities. Taking the average of the costs suggested in (10–12) and 
assuming that one session lasts for one hour, this leads to a hypothetical cost of $60 per 
session or $1 per minute. 

 Correct classification: The correct classification of a given listener increases the 
probability for the study to be successful. As suggested in (7), this should involve the long-
term benefits, including the future reduction of follow-up visits in the clinics if the project 
is a success. In this case, we limited the expected benefit to the reduction of follow-up 
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visits. Tecca (13) recently studied the number of visits and the incidence of hearing-aid 
fitting-related complaints during the first six weeks of hearing aid use. It was shown that 
the first and second visit involved changes in the gain and advanced features in more than 
70% of the cases. Since the new BEAR fitting rationale aims to provide a better first-fit 
solution, a cost of one follow-up visit ($60) was considered here. 

 Misclassification cost: The cost of classifying the listener as belonging to a different 
auditory profile would correspond to the extra efforts used for this  listener to obtain their 
optimal fitting, i.e. follow-up visits. Here, it is assumed that these listeners would be 
unsatisfied with their fittings because that corresponds to any other auditory profile and 
that this would lead to two extra follow-up visits for fine-tuning and verification ($120). 

 
Table 1 shows the characteristics of each of the considered classifiers in terms of number of tests, the 
duration of the session and the total test cost and session cost.  
 

Table 1- Description of the four classifiers in terms of number of tests, duration and costs. The number of 

tests includes the outcome measure HINT by default even in the case of DTA and DT4 where this test is not 

part of the decision trees. 
Decision 

Trees 
Description Number of 

tests 
Duration 

(min) 
Test cost ($) Session cost 

($) 

DTA Audiometry classifier  1 27 1.2 28.2 

DT10 Complete classifier 5 68 6 74 

DT7 Pruned classifier I 4 41 4.8 45.8 

DT4 Pruned classifier II 3 34 3.6 37.6 

 

3 Results  

3.1 Classification performance 
The four classifiers were tested with a constructed data set based on the original data of the BEAR3 

data after applying bootstrapping. Figure 3 shows the confusion matrices of the four classifiers. 

 
Figure 3 – Confusion matrices corresponding to one single iteration of classification for each of the four 

tested decision trees.  
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The audiometry-based classifier (DTA) was able to correctly predict 67% of the data with a low 

sensitivity in the predictions of profiles B and C and a low specificity in the case of profile D (19%). 
The classifiers DT10, DT7 and DT4 had an overall accuracy of 85%. However, they differed in terms 
of the specificity and sensitivity for each of the profiles. DT10 and DT7 were able to identify some 
Uc listeners correctly. In contrast, while DT4 lead to a higher specificity in the classification of profile 
D, it had the disadvantage that all the Uc listeners would be classified as any of the four profiles. The 
main difference between DT10 and DT7 was the sensitivity, especially for the Uc listeners. DT10 was 
more accurate for the Uc listeners, and it had also higher specificity for some of the other profiles. 
DT7 predicted less Uc listeners and misclassified more true B listeners, but had also higher sensitivity 
for profile C. Overall, the decision trees that contain binary decisions for identifying Uc listeners 
(DT10 and DT7) were both more accurate and more specific. 

3.2 Expected cost 
The expected cost was calculated according to Equation 4. Additionally, the total expected cost of 

the field study was estimated by the sum of the fixed costs, the planned sessions for 500 listeners 
recruited randomly, and the additional sessions needed for fulfilling the requirement of testing 60 
listeners in each profile. 

Figure 4 shows the expected costs. The left panel illustrates the differences among the four decision 
trees where DTA resulted in higher costs than the other three classifiers. DT10 provided higher cost-
efficiency with $4 gained per listener, followed by DT7 and DT4 with $1.5 each per listener. The right 
panel of Figure 4 shows the total cost of the field study. The audiometry-based DTA classifier was the 
one with the lowest fixed and planned costs but the highest total cost. This is because of the risk of 
misclassification, which requires numerous additional listeners to get 60 subjects in profile D, with a 
total of 1992 listeners. DT10 and DT7 required a similar number of listeners (~675 listeners in total) 
but differed in the session cost, making DT7 a cheaper decision tree overall. The last decision tree 
DT4 provided the lowest total cost and required a lower number of additional measurements (564 
listeners in total). However, the disadvantage is that DT4 cannot identify Uc listeners and would 
therefore classify them as belonging to one of the four auditory profiles. If the aim is to achieve a low 
number of misclassified listeners, this classifier would not be the optimal choice.  

 

 
Figure 4 – Expected classification cost per session and total classification cost. The total classification cost 

involves the costs of the implementation of new tests (Fixed), the session costs for 500 listeners 

(Sessions500) and the cost of additional sessions (SessionsAdd). 

 
Overall, the results suggest that DT10 would be the best candidate for the considered field study, 

due to its higher sensitivity and specificity. Moreover, the clinical test battery that can help to better 
define the auditory profiles in a larger population by gathering information related to auditory spectro-
temporal resolution, speech intelligibility, loudness perception and binaural processing abilities.   
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4 Discussion  
The results of the present study speak in favor of a reduced test battery based on five tests included 

in DT10 for classifying listeners in clinical practice. These tests include adaptive categorical loudness 
scaling (ACALOS), the hearing in noise test (HINT), the binaural pitch (BP) test, the frequency 
threshold for identifying interaural phase differences (IPD), and a fast version of the spectro-temporal 
modulation sensitivity test (fSTM). As such, the proposed clinical version of the test battery covers 
four domains: loudness perception, speech-in-noise intelligibility, binaural processing abilities and 
spectro-temporal resolution. Although the original BEAR test battery also involved tests related to 
audibility and middle-ear analysis (as well as some additional tests in the four covered domains), the 
five tests were found to be the most informative and reliable for the classification of the listeners  in 
auditory profiles. 

 
The ACALOS test is able to estimate hearing thresholds, which are comparable to the ones 

provided by pure-tone audiometry (14). In the present study, these estimates were used as the most 
informative predictors for the fitted classifier (DT10) instead of the audiometric thresholds. ACALOS 
is also able to provide supra-threshold information related to loudness perception, such as the slope 
of the growth of loudness, the most comfortable level and the overall dynamic range. Therefore, the 
use of ACALOS could be of interest not only for the purpose of auditory profiling but also for hearing-
aid fitting. For example, it would provide information about the growth of loudness of the patient that 
could guide fine-tuning of the gain at different input levels. Moreover, fitting formulas based on 
loudness normalization could be refined if loudness is measured with this technique (15). 

 
The results of the fSTM test showed that profile C listeners have significantly poorer performance 

than listeners belonging to profiles A, B or D. This makes this new test quite interesting for 
classification. Additionally, the HINT results showed that profile B and C listeners had elevated 
speech reception thresholds in noise, suggesting that hearing-aid outcome will improve for these 
listeners if advanced processing is able to increase effectively improve the signal-to-noise ratio. 
Therefore, it would be interesting to investigate whether the tests involved in DT4 only (ACALOS, 
fSTM) are sufficient for a short version of the clinical test battery. Moreover, these tests are not 
language-dependent, in contrast to HINT. Although DT4 could be more easily adopted by the public 
health centers due to the cost-efficiency and shorter duration of the tests (35 min), the use of more 
informative tests, including the complete decision tree (DT10), should be of higher priority for a field 
study with research as the main purpose.  

 
The unclassified group can only be identified using DT10 or DT7. It is of interest to identify this 

group during the field study further explore their supra-threshold auditory performance, which could 
help better understand the consequences of hearing loss in those listeners. 

5 Conclusion 
The results of the present study support the implementation of new audiological tests in the clinic 

to achieve a more comprehensive definition of the hearing abilities of patients with hearing loss. Four 
decision trees were evaluated in terms of classification performance and cost efficiency. The most 
informative and reliable tests beyond the audiogram were found to include the evaluation of spectro-
temporal modulation sensitivity, loudness perception and binaural processing abilities . The BEAR 
clinical test battery will be evaluated in a large-scale study together with the new profile-based 
hearing-aid fitting strategies. The BEAR clinical test battery based on DT10, and proposed for such a 
field study, is available in a public repository1. 

ACKNOWLEDGEMENTS 
We want to thank Dorte Hammershøi, James Harte and the other BEAR partners for their input 

during the realization of this study. This work was supported by Innovation Fund Denmark Grand 
Solutions 5164-00011B (Better hEAring Rehabilitation project), Oticon A/S, GN Hearing, Widex A/S, 
Aalborg University, University of Southern Denmark, the Technical University of Denmark, Force  
Technology, and the university hospitals in Aalborg, Odense and Copenhagen. The funding and input 
                                                        
1 https://bitbucket.org/hea-dtu/bear-test-battery/  

3847



 

 

from all partners is sincerely acknowledged. 

REFERENCES 
1.  Kochkin S. MarkeTrak VIII : Consumer satisfaction. Hear J. 2010;63(1):19.  
2.  Tecca J. Are post-fitting follow-up visits not hearing aid best practices? Hear Rev . 2018;25(4)(4):12–22. 

Available from: http://www.hearingreview.com/2018/03/post-fitting-follow-visits-not-hearing-aid-best-
practices/  

3.  Sanchez Lopez R, Bianchi F, Fereczkowski M, Santurette S, Dau T. Data-Driven Approach for Auditory 
Profiling and Characterization of Individual Hearing Loss. Trends Hear . 2018 Jan;22:233121651880740. 
Available from: http://journals.sagepub.com/doi/10.1177/2331216518807400  

4.  Sanchez-Lopez R, Nielsen SG, El-Haj-Ali M, Bianchi F, Fereckzowski M, Cañete O, et al. Auditory tests 
for characterizing hearing deficits: The BEAR test battery. Int J Audiol. (in preparation).  

5.  Sanchez-Lopez R, Fereczkowski M, Neher T, Santurette S, Dau T. Robust auditory profiling: Improved 
data-driven method and profile definitions for better hearing rehabilitation. Proc ISAAR vol 7. 
2019;(submitted).  

6.  Sweets JA, Pickett RM. Evaluation of Diagnostic Systems . Elsevier; 1982.  
7.  Gorga MP, Neely ST. Cost-effectiveness and test-performance factors in relation to universal newborn 

hearing screening. Mental Retardation and Developmental Disabilities Research Reviews. 2003.  
8.  Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning . The Mathematical Intelligencer. 

New York, NY: Springer New York; 2009. 83–85 p. (Springer Series in Statistics; vol. 27).  
9.  Uus K, Bamford J, Taylor R. An analysis of the costs of implementing the National Newborn Hearing 

Screening Programme in England. J Med Screen . 2006 Mar 23;13(1):14–9. Available from: 
http://journals.sagepub.com/doi/10.1258/096914106776179764 

10.  Fleming S, Docs S. Commissioning Services for People with Hearing Loss: A Framework for 
Clinical Commissioning Groups . 2016 [cited 2019 May 14]. Available from: 
https://www.england.nhs.uk/publication/commissioning-hearing-loss-framework/  

11.  Mclean A. Development and Implementation of a National Funding and Service System for Hearing 
Aids Stage One Report March 2008. 2008;  

12.  Abrams H, Chisolm TH, McArdle R. A cost-utility analysis of adult group audiologic rehabilitation: 
are the benefits worth the cost? J Rehabil Res Dev . 39(5):549–58. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/17684833  

13.  Tecca J. Are post-fitting follow-up visits not hearing aid best practices? Hear Rev. 2018;25(4)(4):12–
22.  

14.  Al-Salim SC, Kopun JG, Neely ST, Jesteadt W, Stiegemann B, Gorga MP. Reliability of Categorical 
Loudness Scaling and Its Relation to Threshold. Ear Hear . 2010 Aug [cited 2017 Jan 31];31(4):567–78. 
Available from: http://www.ncbi.nlm.nih.gov/pubmed/20588122  

15.  Brand T, Hohmann V. An adaptive procedure for categorical loudness scaling. J Acoust Soc Am . 2002 
Oct;112(4):1597–604. Available from: http://asa.scitation.org/doi/10.1121/1.1502902  

 

3848


