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Abstract
The diffuse sound transmission through a complex finite-sized wall or floor can be efficiently computed with
a hybrid approach. The wall is then modelled deterministically as finite size effects and modal behaviour can
be important in this frequency range, while the rooms carry a diffuse field and are modelled as stochastic
subsystems. The finite element method is usually employed to compute the modal behaviour of the wall. At
higher frequencies, the computational cost then increases significantly as a finer mesh is required due to the
shorter wavelength of structural deformation. For this reason, an alternative approach was recently developed,
which allows to replace the finite element model by an analytical model for finite-sized thick and layered walls.
However, the application of this approach is limited to layered structures such as sandwich panels or double
glazing. In the present work, the elaboration towards more complicated building elements which exhibit spatial
periodicity, will be considered by invoking periodic structure theory. As a first validation example, a steel panel
is considered, in which the predictions are compared to other numerical and experimental data.
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1 INTRODUCTION
Lightweight systems are more frequently used in buildings to achieve a high thermal performance and to save

material and transportation costs. Because of their relatively low weight and complex vibro-acoustic behaviour,

achieving a sufficient level of sound insulation with such systems is, however, challenging. The goal in this

work is to create an accurate sound transmission loss prediction method, which is efficient enough to be used

as a design tool and can replace the need of excessive experimental prototype testing.

The framework of the hybrid finite element-statistical energy analysis (FE-SEA) approach [1, 2, 3] serves as a

starting point in this article. Using the diffuse field reciprocity relationship [4, 5], the hybrid framework allows

modelling the rooms of the overall room-wall-room system as stochastic subsystems (like in statistical energy

analysis, SEA), while treating the wall in a deterministic way with finite element (FE) analysis. A diffuse field

model is by definition a stochastic model. The uncertainty of the sound transmission loss concerning the diffuse

field assumption in the SEA subsystems can be assessed [3]. This allows computing the mean of the sound

transmission loss as well as its variance. Note that the computation time of the FE-SEA method will increase

at higher frequencies as a finer mesh is needed to capture the small wavelength deformations of the structure.

To overcome this limitation, two alternative approaches were already explored. First, the finite element analysis

could be replaced with a semi-analytical transfer matrix method (TMM) [6, 7, 8], which allows to predict the

behaviour of infinite walls and floors, consisting of homogeneous solid, fluid and/or poroelastic layers. By

projecting the wall displacements onto a set of sinusoidal lateral basis functions [9, 10], the modal behaviour

of the structure is approximately taken into account. This recently developed approximate modal TMM-SEA

approach (mTMM-SEA) is however limited to layered systems [11].

Secondly, a hybridization between periodic finite element modelling (peFE) and statistical energy analysis was

achieved in [12]. The periodic lay out of most building elements could therefore be exploited. The latter

peFE-SEA approach has two challenges that must be tackled: (1) modal behaviour, which influences the sound
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Figure 1. A room-wall-room system, in which the wall is modelled in a deterministic way while the rooms are

modelled as SEA subsystems.

transmission loss in the considered frequency range (50-3150 Hz), is disregarded; (2) computing the sound

transmission loss results in an integration over each phase constant surface in the phase lag domain and is

thus computationally inefficient. The two problems are solved by discretizing the phase domain into the phase

combinations causing standing waves in the structure. Ideas in this direction were already mentioned in [12].

Whereas the authors in [12] focus mainly on Born-von Kármán boundary conditions, the wall or floor in the

present work is assumed to have simply supported boundary conditions, because modal testing has revealed that

simply supported boundary conditions occur in the small transmission opening of the KU Leuven Laboratory

of Acoustics [13]. Contributions of the present work include also a theoretical expansion of the method with

special attention to implementation issues and a detailed validation example.

The remainder of this article is organized as follows. The theory is summarized in section 2. Section 2.1 intro-

duces the hybrid deterministic-SEA approach to sound transmission modelling in general. Section 2.2 elaborates

periodic structure theory with emphasis on obtaining the necessary dynamic stiffness matrices. In section 3 the

method is validated for a steel plate by comparing the predicted sound transmission loss with other prediction

tools and with experimental data. The conclusions are to be found in section 4.

2 A HYBRID MODAL BASED PERIODIC FINITE ELEMENT-SEA APPROACH
2.1 The hybrid framework
Throughout this article, a room-wall-room system is considered, where the rooms carry a diffuse wave field

and the wall a deterministic wave field (cfr. Fig. 1). The out-of-plane displacement uz of the partition wall at

position x = (x,y) and at frequency ω is decomposed using a finite set of Ndof global basis functions ϕ̂ϕϕ and

corresponding generalized coordinates a:

uz(x,ω)≈
Ndof

∑
p=1

ϕ̂ϕϕ p(x)ap(ω) (1)

All generalized response degrees of freedom (DOFs) are collected in the vector a(ω) ∈ C
Ndof , so that the time-

domain response is given by Re(aeiωt), with i the imaginary unit. Similarly, the corresponding generalized

harmonic loads are collected in the load amplitude vector f(ω) ∈ C
Ndof . Since a contains all (generalized)

interface degrees of freedom between the wall and the rooms, the equations of motion of the whole system

(room-wall-room) can be written as

Da = f, (2)

with D ∈ C
Ndof×Ndof the dynamic stiffness matrix at frequency ω . D may be decomposed into the dynamic

stiffness matrix of the wall, denoted as Dd (subscript d stands for deterministic), and the dynamic stiffness
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matrices of the rooms, denoted as D1 and D2:

D = Dd +D1 +D2 (3)

Since the rooms are assumed to carry a diffuse field in this work, they are modelled as random subsystems in

the overall room-wall-room system. The dynamic stiffness matrix of each acoustic room volume k is decom-

posed as

Dk = D(k)
dir +D(k)

rev, k = 1,2 (4)

where D(k)
dir denotes the mean of the subsystem’s dynamic stiffness matrix D(k)

dir := E [Dk]. This term describes the

response of subsystem k to the outgoing wave field caused by the displacements of the deterministic boundary

[4, 14]. Boundaries and objects in the room induce however random wave scattering. The influence of this

reverberant field on subsystem k is captured by D(k)
rev. With this decomposition, the equations of motion for a

random subsystem are

D(k)
dir a =−fk − f(k)rev, (5)

where the reverberant forces are defined as f(k)rev := −D(k)
reva, and fk denotes the sum of the loads applied to

subsystem k at its DOFs. The overall equations of motion (2) become

Dtotq = f− f(1)rev − f(2)rev, (6)

where Dtot := Dd +∑2
k=1 D(k)

dir is a purely deterministic matrix. When a diffuse field acts in both rooms, the

reverberant forces f(k)rev are related to D(k)
dir through the diffuse field reciprocity relationship [4]:

E[f(k)revf(s)rev] = δks
4Êk

ωπnk
Im

(
D(k)

dir

)
, (7)

with nk the modal density of subsystem k [15] and δks the Kronecker delta. Note that the hat symbol is

employed here as shorthand notation for ensemble mean. Using this equation, it is possible to obtain the mean

time-averaged total energy Êk of room k from a stationary power balance which involves the other random

subsystems as well as the deterministic master system, assuming the fields are statistically independent of each

other. For the case where the external loading acts solely on the random subsystems (rooms), the power balance

is formulated as [1]:

ω
(
ηk + η̂d,k

)
Êk +

2

∑
j=1

ωη̂k jnk

(
Êk

nk
− Ê j

n j

)
= P̂k, k = 1,2. (8)

In this expression, ηk is the damping loss factor of subsystem k, Pk the power input from external loading

injected directly into the diffuse field of this subsystem, and

η̂d,k =
2

ωπnk
∑
r,s

Im(Dd,rs)
(

D−1
tot Im

(
D(k)

dir

)
D−H

tot

)
rs

(9)

η̂k j =
2

ωπnk
∑
r,s

Im
(

D(k)
dir,rs

)(
D−1

tot Im
(

D( j)
dir

)
D−H

tot

)
rs

(10)

where the superscript H denotes Hermitian transpose and the integer subscripts r,s select an element in row

r and column s of a matrix. When the sound insulation provided by the wall is sufficiently high, P̂k can be

approximated as the ensemble mean of the power input into a hard-walled room. It can be noted that the power

balance equation (8) has formally the same structure as in conventional SEA. Therefore the factors η̂k j can

be interpreted as coupling loss factors, and (10) provides a rigorous way to compute their ensemble mean. In
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a similar manner, (9) enables to rigorously estimate the power that is lost by energy dissipation in the wall.

By solving for the mean coupling loss factor η̂12 between the two subsystems, the mean sound transmission

coefficient τ̂12 can be obtained from [15]

τ̂12 = η̂12
4ωV1

caS
, (11)

with S the surface area of the wall, V1 the volume of the sending room, and ca the speed of sound. Note that

the dynamic stiffness matrices are diagonal when cross modal coupling is neglected, in which case equation

(11) can be rewritten as:

τ̂12 =
16π
Sk2

a

[
∑
p

Im{D(2)
dir,p}Im{D(1)

dir,p}
|Dtot,p|2

]
(12)

where ka is the acoustic wavenumber.

Figure 2. Indication of the edge and corner degrees of freedom of a periodic unit cell. The red arrows show

the path of a travelling wave, reflected at the edges. Combination of these four waves result in a standing wave.

2.2 Determining Dd and Ddir using periodic structure theory
If a two-dimensional periodic structure with dimensions Lx×Ly is considered, it is possible to extract a periodic

unit cell which is repeated Nx and Ny times within the structure in respectively the x- and y-direction. A finite

element model of such a unit cell with dimensions lx and ly is shown in figure 2 where the local coordinate

system is denoted by x′ = (x′,y′). The degrees of freedom q of the unit cell are reorganized into interior

(I=interior), edge (T=Top, B=Bottom, R=Right, L=Left) and corner DOFs (LB, RB, LT, RT). The dynamic

response of the unit cell is then investigated using Bloch’s theorem, in which periodic boundary conditions are

imposed onto the edge and corner DOFs [16, 17, 18, 19, 20]. Defining the phase lag combination (εxp, εyq),
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the relations between the boundary DOFs can be written in matrix format:

q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qI

qB

qT

qL

qR

qLB

qRB

qLT

qRT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0
0 I 0 0
0 Ie−iεyq 0 0
0 0 I 0
0 0 Ie−iεxp 0
0 0 0 I
0 0 0 Ie−iεxp

0 0 0 Ie−iεyq

0 0 0 Ie−iεxp−iεyq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

qI

qB

qL

qLB

⎤
⎥⎥⎦= Rq′ (13)

with q′ = [qT
I qT

B qT
L qT

LB]
T the reduced DOFs. This reduction is then applied to the equations of motion of the

unit cell as well, so that the following reduced eigenvalue problem is obtained:

[K′ −ω2M′]q′ = 0 (14)

where K′ = RH(εxp,εyq)KR(εxp,εyq) and M′ = RH(εxp,εyq)MR(εxp,εyq) are respectively the reduced mass and

stiffness matrix of the periodic unit cell. As modal behaviour is investigated, only phase constants that allow

standing waves in the structure need to be considered. For a mode of the system, the summation of the phase

constants of a back and forward travelling wave in the global structure adds up to a multiplication of 2π , so

that [22]:

εxp = pπ/Nx (p = 0, . . . ,Nx) and εyq = qπ/Ny, (q = 0, . . . ,Ny)

For each phase constant combination (εxp,εyq), the eigenvalue problem in equation (14) is solved for a number

of possible corresponding eigenfrequencies Ωpq,n and corresponding eigenvectors ϕϕϕ pq,n(x′) as multiple waves

can propagate under an imposed periodic boundary condition. Note that the mode shapes of the unit cell

are mass normalized: ϕϕϕH
pq,nM′ϕϕϕ pq,n = 1. Post-processing the results includes (1) selecting only the normal

displacements; (2) converting standing waves into travelling waves at the edges and corners of the phase domain.

This is necessary to guarantee the correct use of the proposed general method, which accounts for a two-

dimensional travelling wave; (3) eliminating waves with zero wavenumber in x- or y- direction as they do not

add up to a standing wave in one direction and (4) eliminating the phase shift of the travelling waves to ensure

zero displacements at the boundary of the global structure. The obtained dynamic properties of the unit cell are

now used to determine the direct field response of the subsystems and the deterministic response of the wall,

which in their turn will be inserted into the hybrid framework.

First, the direct field dynamic stiffness matrix Ddir,pq,n of standing wave pq,n is determined as follows:

Ddir,pq,n(ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
G∗(ω,k,z = 0)|ψψψ pq,n(k)|2dk, (15)

in which G(ω,k,z = 0) = iω2ρa√
k2

a−||k2|| is the Green’s function with ρa the density of air. To avoid singular-

ity at coincidence, a Green’s function averaged in the wavenumber domain was used [21]. Assuming sim-

ply supported boundary conditions, the displacement field ψψψ pq,n(x) consists of four travelling waves with the

same eigenfrequency as illustrated in figure 2: ϕ̂ϕϕ pq,n(x), ϕ̂ϕϕ(−p)q,n(x), ϕ̂ϕϕ p(−q),n(x) and ϕ̂ϕϕ(−p)(−q),n(x). Because

ϕ̂ϕϕ(−p)(−q),n = ϕ̂ϕϕ∗
pq,n and ϕ̂ϕϕ(−p)q,n = ϕ̂ϕϕ∗

p(−q),n with ∗ indicating the complex conjugate, the standing wave in the

wavenumber domain k = (kx,ky) is found by:

ψψψ pq,n(k) = ϕ̂ϕϕ pq,n(k)+ ϕ̂ϕϕ∗
pq,n(−k)− ϕ̂ϕϕ p(−q),n(k)− ϕ̂ϕϕ∗

p(−q),n(−k) (16)

The travelling wave of the total structure ϕ̂ϕϕ pq,n(k) is derived from the obtained eigenvectors of the unit cell

ϕϕϕ pq,n(k) using the following relation [12]:

ϕ̂ϕϕ pq,n(k) = ϕϕϕ pq,n(k)
(

1− e−iNx(εx−kxlx)

1− e−i(εx−kxlx)

)
·
(

1− e−iNy(εy−kyly)

1− e−i(εy−kyly)

)
(17)
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Figure 3. Harmonic sound transmission loss of a steel plate (a) as predicted with the hybrid modal peFE-SEA

approach (black continuous line), the FTMM (blue dashed line), the hybrid mTMM-SEA method for which

cross modal coupling is neglected (red line), the hybrid mTMM-SEA with cross modal coupling (black dotted

line); and (b) as measured in the Acoustic Laboratory of the KU Leuven (blue continuous line).

ϕϕϕ pq,n(k) and ϕϕϕ p(−q),n(k) follow from a Fourier transform of ϕϕϕ pq,n(x′) and ϕϕϕ p(−q),n(x′). As ϕϕϕ p(−q),n(x′) can be

computed from ϕϕϕ pq,n(x′) by mirroring the displacement field around the x-axis, the eigenvalue problem for the

phase constant combination (p,q) only needs to be performed once. Note that the mesh in the x-domain needs

to be more refined for the computation of the direct field response than required for the FE analysis of the

periodic unit cell. Decoupling this so-called acoustic mesh and the FE mesh is therefore recommended.

Secondly, the deterministic dynamic stiffness matrix Dd,pq,n is determined by:

Dd,pq,n = 4NxNy

(
(1+ iη)Ω 2

pq,n −ω2
)

(18)

with η the loss factor of the structure.

3 VALIDATION EXAMPLE: STEEL PLATE
The modal peFE-SEA is applied to a thin, simply supported steel plate. The steel plate has a density ρ =

7750 kg

m3 , Young’s modulus E = 200GPa, Poisson’s ratio ν = 0.28 and dimensions 1.25m×1.50m×0.002m. The

experimentally determined damping loss factor of the mounted plate can be found in [11]. In the simulations,

the reverberation time T , the air density ρa and the sound speed ca in the rooms are taken to be 1.5s, 1.2 kg

m3

and 343 m
s , respectively. Specifically for the considered peFE-SEA method, the steel panel is divided into square

periodic unit cells with length 0.125 m. The finite element model of the periodic unit cell consists of 15

divisions in both directions. 8-nodes shell elements are used for the free wave propagation analysis. In order to

determine the direct field response with sufficient accuracy, the acoustic mesh has to be finer for standing waves

with higher natural frequencies. The spatial gridspacing is therefore gradually reduced from 3.1 to 1.6 mm for

increasing natural frequencies. Contrarily, the wavenumber domain should be meshed finer at lower frequencies

to capture the peak of the Green’s function and the gridspacing ranges from 0.1 to 1 rad/m over the frequency

range of interest.

Figure 3 (a) shows the narrow-band (1/48 octave bands) predictions of the modal peFE-SEA approach and

different alternative prediction tools, such as the TMM with a simplified spatial windowing technique (FTMM)

[23] and the hybrid mTMM-SEA approach with and without cross modal coupling [11]. The FTMM only takes
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diffraction effects into account, while the other approaches also include modal behaviour. Clearly, the modal

behaviour of the steel panel affects the sound transmission loss up to about 500 Hz as the FTMM prediction

coincides with the other methods from that frequency onwards. When comparing the modal peFE-SEA approach

with the mTMM-SEA method, a good agreement is found when cross modal coupling is neglected in the

mTMM-SEA method as well. The shift (less than 1 dB) between both methods is due to the acoustic mesh

refinement in both methods and adopting a finer acoustic mesh would reduce the discrepancy. Comparison

with the mTMM-SEA, that accounts for cross modal coupling, shows that the peaks at anti-resonances in the

peFE-SEA predictions do not occur, while the dips in the predicted sound transmission loss appear at the same

frequencies [11]. Figure 3 (b) compares the predictions with experimental data for which at lower frequencies

the modal behaviour of the rooms result in oscillations in the sound transmission loss. Above 250 Hz the

diffuse field assumption in the SEA subsystems is justified and there is an overall good agreement.

4 CONCLUSIONS
In this work, a hybridization between two-dimensional periodic finite element modelling and statistical energy

analysis has been investigated for simply supported structures. In order to decompose the displacements of the

structure into standing waves, the dynamic properties of the unit cell only need to be computed for a specific

number of imposed propagation constants. The resulting travelling waves are combined next into standing waves

to compute the direct field response, taking special care for zero displacements at the boundaries of the global

structure. As a validation example, the sound insulation predictions of a steel plate are compared with other

prediction tools and experimental data. The predicted sound transmission loss of the steel plate are in close

agreement with the measured sound insulation.
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