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Abstract
A novel approach is presented to compute the diffuse sound transmission through modally sparse walls. The
fact that the natural frequencies in the adjacent rooms can be considered to form a sequence of random points on
the frequency axis makes this problem amenable to analysis by random point process theory. The method makes
use of the fact that for any diffuse subsystem the local spacings between the eigenvalues saturate to those of a
Gaussian orthogonal ensemble (GOE) matrix and the statistics of its mode shapes saturate to Gaussian random
fields, with a spatial covariance function depending only on wavelength and distance. This stochastic modelling
approach is computationally very efficient and is illustrated for a calcium silicate block wall and a gypsum block
wall.
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1 INTRODUCTION
In a measurement setup, the airborne sound insulation of a partitioning wall is subject to many sources of

uncertainty. These are often difficult to quantify due to lack of information or model complexity. At high

frequencies, the sound pressure at a specific location in the room is sensitive to local variations of the acoustic

field properties caused by random wave scattering inside and at the boundaries of the source and receiver

room. Usually a diffuse field approach is considered, which is a random field, composed of a large number of

statistically independent plane waves with a uniformly distributed spatial phase.

When the local sound pressure in the room is highly sensitive to local variations of the acoustic field properties,

it can be modeled as a pure-tone diffuse reverberant field, as in Statistical Energy Analysis (SEA). In this

approach, the system is decomposed into homogeneous subsystems whose response is characterized with a

single random variable, namely its total energy. Next to the mean of the total sound energy over the random

ensemble of rooms, also the variance can be predicted [4], employing a non-parametric model of uncertainty.

In many applications, some of the subsystems of a built-up system are very sensitive to small wave scatterers,

while others are not. In this mid-frequency range, a hybrid method can be used combining deterministic and

stochastic energy based methods. This has been achieved in the hybrid FE-SEA approach [10], based on a

reciprocity relationship that links the mean vibrational energy of a non-parametric random SEA subsystem to

the variance of the nodal forces at its boundary.

This paper presents a novel approach to compute the airborne sound insulation of walls. The same assumptions

are made as for a hybrid FE-SEA approach, namely that (1) the wave field of each random subsystem across

the random ensemble can be assumed diffuse and (2) the mode shapes saturate to Gaussian fields. Instead of

directly computing the ensemble mean and variance of the total energy, the approach presented here uses a

Monte Carlo simulation, where every sample represents a realization of the diffuse subsystem. An advantage

of this procedure is that parametric uncertainty in the modally sparse subsystems can be easily included by

also varying the uncertain parameters in every Monte Carlo realization. This is useful in e.g. assessing the

reproducibility of a measurement procedure using a virtual round robin test [12]. The approach utilizes the

random point process theory, which relies on the assumption that the natural frequencies can be considered to

form a sequence of random points on the frequency axis. This assumption is only valid the natural frequencies

mix with respect to each other across the random ensemble of rooms, which is the case at high frequencies.
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2 PREDICTION MODEL FOR AIRBORNE SOUND INSULATION
The problem considered in this paper is the airborne sound transmission through a modally sparse wall in

between two diffuse rooms. Quantities related to the source room are indicated with subscript 1, quantities

related to the wall with subscript 2, and quantities related to the receiver room with subscript 3.

2.1 System of equations
The transmission loss is computed using the assumed-modes method, approximating the pressure fields of the

source room p1 and reveiver room p3 and the vibration field of the wall u2 into a finite set of basis functions:

p1/3 ≈
n1/3

∑
i=1

φ1/3i(x,y,z)q1/3i(ω) = φφφ 1/3q1/3 u2 ≈
n2

∑
j=1

φ2 j(y,z)q2 j(ω) = φφφ 2q2 (1)

Inserting these approximations into Lagrange’s equations of motion and adopting a hysteretic damping model

yields the following linear system of equations:⎡
⎣ D11 K12 000

K21 D22 K23

0 K32 D33

⎤
⎦
⎧⎨
⎩

q1

q2

q3

⎫⎬
⎭=

⎧⎨
⎩

f1

0
0

⎫⎬
⎭ (2)

where

Dkk =−ω2Ik +ΩΩΩ2
k(1+ iηk) (3)

with i the imaginary unit and ΩΩΩk the diagonal matrix containing the circular undamped eigenfrequencies for

subsystem k corresponding to the mode shapes in φφφ k. The damping loss factors of the rooms are computed from

their reverberation times via η = 4.4π/(ωT ). A point monopole with volume acceleration ap(ω) is assumed,

located at (xp,yp,zp). Element i of the loading vector f1 then reads

f1i(ω) =−ρaap(ω)φ1i(xp,yp,zp) (4)

The matrices K12 and K32 are coupling matrices that represent the loading on the room due to the plate move-

ment, and K21 and K23 represent the loading on the plate due to the room pressure. The elements of the

coupling matrices are:

K21, ji =
∫ Ly2

0

∫ Lz2

0
φ1i(Lx1,y,z)φ2 j(y,z)dzdy K12,i j =−ρaω2K21, ji (5)

K23, jk =
∫ Ly2

0

∫ Lz2

0
φ3k(Lx1,y,z)φ2 j(y,z)dzdy K32,k j =−ρaω2K23, jk (6)

2.2 Computation of the sound reduction index
In order to efficiently solve equation (2), row reduction is performed on the block matrices to reduce the size

of the system of equations in equation (2). This yields:

Aq2 = b (7)

where the elements of the matrices A and b are given by:

Amn = D22,mn +ρω2
n1

∑
i=1

K21,miK21,ni

D11,ii
+ρω2

n3

∑
k=1

K23,mkK23,nk

D33,kk
bm =−

n1

∑
i=1

K21,mi f1i

D11,ii
(8)
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The energy in the source and receiver room can then be computed as:

E1 =
1

ρa

n1

∑
i=1

∣∣∣∣∣ f1i −
n2

∑
j=1

K12,i jq2 j

∣∣∣∣∣
2

|D11,ii|2
≈ 1

ρa

n1

∑
i=1

| f1i|2
|D11,ii|2

E3 = ρaω4
n3

∑
k=1

∣∣∣∣∣
n2

∑
j=1

K23, jkq2 j

∣∣∣∣∣
2

∣∣D33,kk
∣∣2 (9)

The sound reduction index R is finally computed with the measurement formula:

R = 10log10

(
E1

V1

)
−10log10

(
E3

V3

)
+10log10

(
S2

A3

)
(10)

in which V1 and V3 are the volume of the source and receiver room, S2 is the surface area of the partition, and

A3 is the absorption of the receiver room.

3 SUBSYSTEM PROPERTIES
The computations require the natural frequencies and mode shapes of the subsystems to be computed. The

rooms are modeled as diffuse subsystems, the wall is assumed to be a deterministic subsystem.

3.1 Deterministic subsystem
If the wall can be modeled as a homogeneous, isotropic, thin plate, its natural frequencies are given by:

ω2 j =

√
D2

m′′
2

[(
m jyπ
Ly2

)2

+

(
m jzπ
Lz2

)2
]

(11)

with D2 the bending stiffness, m′′
2 the mass of the wall per unit area, Ly2 the width, and Lz2 the height of the

wall. The integers m jy and n jz represent the number of half wavelengths in the plate dimensions. The mode

shapes of the wall are calculated as follows:

φ2 j =
2√

m′′
2Ly2Lz2

sin

(
m jyπy

Ly2

)
sin

(
m jzπz

Lz2

)
= A2 sin

(
k2 jyy

)
sin
(
k2 jzz

)
(12)

3.2 Diffuse subsystems
The wave fields in the rooms are modeled as diffuse fields. Diffuse field models essentially describe rooms

with locally uncertain geometric properties, material properties, and/or boundary conditions, that is, rooms with

uncertain wave scatterers. The mode shapes of a room in high-frequency regime can be interpreted as standing

waves that arise from many traveling plane wave components. Adopting a diffuse acoustic field model, the

pressure mode shape at a given location consists of a summation of independent plane acoustic waves with

the same mean amplitude and uncorrelated phases, coming from all directions with equal probability. It then

follows from the central limit theorem that the acoustic mode shapes are zero-mean, Gaussian random fields. A

zero-mean Gaussian random field is uniquely determined by its covariance function.

For diffuse reflecting boundaries, the mode shapes φsi are statistically homogenous, i.e., the statistics of the

pressure mode shape components are independent of their position. The corresponding random wave field is a

diffuse field. For three-dimensional volumes, its covariance function then has the form [1]:

Csi
(
x,x′
)
=

{
Asj0 (ksi|x−x′|) for 2 points inside the room, away from a deterministic boundary

2Asj0 (ksi|x−x′|) for 2 points on a reflecting boundary, away from joints and corners
(13)

where j0(x) = sin(x)/x is the spherical Bessel function of the first kind and order zero, ksi := 2π
λsi

denotes the

wavenumber corresponding to the wavelength λsi of mode i for subsystem s, and As is a factor that is inde-

pendent of position, which can be determined from the mode shape normalization condition. In an acoustic
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enclosure Ω with volume Vs, the normalization condition reads:

∫
Ω

1

c2
φ 2

si(x)dx = 1 ⇔ As =
c2

Vs
. (14)

The correlation function (13) depends only on the distance between the considered mode shape components,

the wavelength and the total volume. Close to perfectly reflecting boundaries, the mean squared sound pressure

equals twice the mean squared sound pressure in the center of the room [13]. Because of this, a factor two

appears in the covariance function (13) for points located on the reflecting structural element. In addition, when

the distance between x and x′ is large compared to the wavelength λsi, it follows from the above expressions

that the mode shapes evaluated at these distinct points are approximately uncorrelated.

3.3 Computation of the coupling matrices
Instead of numerically evaluating the integrals in equations (5) and (6), the statistics of the coupling matrices

are computed directly. When integrating a Gaussian field, it is the limit of a linear combination of Gaussian

random variables so it is again Gaussian. The entries of the coupling matrix are therefore Gaussian variables

and are determined by their mean and variance. As the mean of the mode shapes in the rooms equals zero,

also the mean of the coupling matrices equals zero. The variance of K21,kl is computed as follows:

Var
(
K21, ji

)
=
∫∫∫∫

E
[
φ1i(Lx1,y,z)φ1i(Lx1,y′,z′)

]
φ2 j(y,z)φ2 j(y′,z′)dz′dzdy′dy (15)

The term E [φ1i(Lx1,y,z)φ1i(Lx1,y′,z′)] is the covariance function for two points on a reflecting boundary (equa-

tion (13)), and this integral becomes:

Var
(
K21, ji

)
= 2A1A2

2

∫∫∫∫
j0
(
k1i|x−x′|)sin

(
k2 jyy

)
sin
(
k2 jyy′

)
sin
(
k2 jzz

)
sin
(
k2 jzz′

)
dz′dzdy′dy (16)

where the integrals go from 0 to Ly2 for the ones in y and y′ and from 0 to Lz2 for the ones in z and z′. The

distance function in the spherical Bessel function is given by |x− x′| =
√
(y− y′)2 +(z− z′)2. The quadruple

integral can be converted into the following double integral:

Var
(
K21, ji

)
= 2A1A2

2L2
y2L2

z2

1∫
0

1∫
0

j0

(
a1iy
√

u2 + γ2v2
)

h
(
a2 jy,u

)
h
(
a2 jz,v

)
dvdu (17)

with a1iy = k1iLy2, γ = Lz2/Ly2, a2 jy = k2 jyLy2, a2 jy = k2 jzLz2, and:

h(a,u) = (1−u)cos(au)− cos(a)
a

sin(a(1−u)) (18)

The integral in equation (17) is evaluated numerically. The mean and variance of K23, jk is computed in the

same way.

4 RANDOM POINT PROCESS THEORY
4.1 Introduction
Note that for obtaining the energies in the rooms, sums are needed over expressions with D11,kk or D33,kk in the

denominator, i.e. in Eqs. (8) and (9). At high frequencies, the computation cost of the sound reduction index is

dominated by these sums. The natural frequencies can be considered to form a sequence of random points on

the frequency axis, and thus the problem is amenable to analysis by random point process theory [11]. Strictly,

the natural frequency point process is assumed to be stationary, which is only the case if the modal density of
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the subsystems is constant, and this is not true in this case. On the other hand, only a limited number of modes

significantly contribute at any considered frequency. As the modal density is approximately constant over the

frequency range corresponding to these modes, it is reasonable to assume that the point process is stationary.

A distinction is made between type 1 and type 2 sums, with type 1 referring to the sums in Eq. (8) and type

2 referring to the ones in Eq. (9). The terms of these sums have D11,kk or D33,kk in the denominator. From the

definition of the matrices D11,kk and D33,kk, the type 1 sums S1(ω) and type 2 sums S2(ω) can be expressed

as:

S1(ω) = ∑
k

ck

−ω2 +ω2
k (1+ iη)

S2(ω) = ∑
k

ck∣∣−ω2 +ω2
k (1+ iη)

∣∣2 = ∑
k

ck

(ω2
k −ω2)2 +η2ω4

k
(19)

Unless ck is much smaller at ω ≈ ωk than at other frequencies, it follows that the modes mainly contributing to

the summations are the ones in the vicinity of the considered frequency. These sums can also be written as:

S1(ω) =

∞∫
−∞

h1(ω,ω ′)ξ (ω ′)dω ′ S2(ω) =

∞∫
−∞

h2(ω,ω ′)ξ (ω ′)dω ′ (20)

where

ξ (ω ′) = ∑
k

ckδ (ω ′ −ωk) (21)

h1(ω,ω ′) =
1

−ω2 +ω ′2(1+ iη)
≈ 1

2ω
ω ′ −ω − iωη/2

(ω ′ −ω)2 +(ηω/2)2
(22)

h2(ω,ω ′) =
1

(ω ′2 −ω2)2 +η2ω ′4 ≈ 1

4ω2

1

(ω ′ −ω)2 +(ηω/2)2
(23)

in which the approximations are commonly used [3, 5].

Random point process theory now allows computing the statistics of these sums. These are separately discussed

for the two sum types in the next to subsections.

4.2 Statistics of type 1 sums
Weaver [14] found that, for the generic case where the considered spatial uncertainty does not preserve sym-

metries, the statistics of the local eigenvalue spacings saturate to those of the Gaussian Orthogonal Ensemble

(GOE) matrix from random matrix theory [7]. It can be shown that the GOE assumption leads to the following

statistics (more precisely the ensemble mean and variance) of the type 1 sum S1(ω) as defined in (20) [5]:

E [S1(ω)] =− iE [ck]πn
2ω

Var(Re{S1(ω)}) = Var(Im{S1(ω)}) = πn
4ω3η

E [ck]
2

(
α −1+

1

πm

)
(24)

where n is the modal density, m = ωηn the modal overlap factor and α = E
[
c2

k

]
/E [ck]

2.

As for diffuse subsystems, these sums are performed over many modes, it is assumed, according to the central

limit theory, that the real and imaginary part of the sums have a Gaussian distribution. This is for example

consistent with the assumption of Schroeder [9] that transfer functions written in the form of a modal sum,

which are closely related to the type 1 sums1, are approximately complex Gaussian. A realization of a type 1

sum is therefore obtained from:

S1(ω) =− iE [ck]πn
2ω

+(ξR + iξI)

√
πn

4ω3η
E [ck]

2

(
α −1+

1

πm

)
(25)

1The similarity between the type 1 sums and the transfer function in modal form can be easily seen by comparing Eq. (19) and the transfer

function expression e.g. in [5]: the denominator of the sum terms is the same, the numerator consists of the product of two zero-mean Gaussian

factors
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with ξR and ξI realizations of normally distributed random numbers with mean 0 and standard deviation 1.

The only terms still to be determined are the mean and mean of the square of the factors ck for the sums in (8).

These are calculated from basic probability rules:

E [K21,miK21,ni] = σ2
K21,m

(ω)δmn E
[
(K21,miK21,ni)

2
]
= (2δmn +1)σ2

K21,m
(ω)σ2

K21,n
(ω) (26)

E [K21,mi f1i] = 0 E
[
(K21,mi f1i)

2
]
= σ2

K21,m
(ω)σ2

f1i
=

ρ2c2

V1
σ2

K21,m
(ω) (27)

in which σ2
K21,m

(ω) = Var
(

K21,mi

(
k1i =

ω
c

))
.

4.3 Statistics of type 2 sums
The mean and variance of type 2 sums equal [2, 3]:

E [S2(ω)] =
E [ck]πn
2ηω3

Var(S2(ω)) = E [S2(ω)]2
(

α −1

πm
+

1

(πm)2

)
(28)

The type 2 sums appear in Eq. (9), which represent the total energies in the source and receiver room. As the

total energy of a subsystem is empirically found to follow a log-normal distribution [6], also the sums appearing

in Eq. (9) are assumed to have a log-normal distribution. A realization of a type 2 sum is therefore obtained

as follows. First the mean μ2 and standard deviation σ2 of the natural logarithm are computed:

μ2(ω) = ln

⎛
⎜⎜⎜⎜⎝

E [S2(ω)]√
1+

Var(S2(ω))

E [S2(ω)]2

⎞
⎟⎟⎟⎟⎠ σ2

2 (ω) = ln

(
1+

Var(S2(ω))

E [S2(ω)]2

)
(29)

after which a realization is obtained from

S2(ω) = exp(μ2(ω)+ξ σ2(ω)) (30)

with ξ a realization of a normally distributed random number with mean 0 and standard deviation 1.

For the sums in Eq. (9), the mean and mean of square of the factors ck are given by:

E
[
| f1i|2

]
= σ2

f1i
E
[
ξ 2

1i
]
=

ρ2c2

V1
E
[
| f1i|4

]
= σ4

f1i
E
[
ξ 4

1i
]
= 3

ρ4c4

V 2
1

(31)

E

⎡
⎣
∣∣∣∣∣

n2

∑
j=1

K23, jkq2 j

∣∣∣∣∣
2
⎤
⎦=

n2

∑
j=1

σ2
K23, j

(ω)
∣∣q2 j
∣∣2

E

⎡
⎣
∣∣∣∣∣

n2

∑
j=1

K23, jkq2 j

∣∣∣∣∣
4
⎤
⎦=

(
∑

j

∣∣q2 j
∣∣2 σ2

K23, j
(ω)

)2

+2∑
i

∑
j

Re
{

q2iq
∗
2 j
}2 σ2

K23,i
(ω)σ2

K23, j
(ω) (32)

In summary, the ensemble probability distribution of the sound reduction index R is obtained as follows. A

Monte Carlo simulation is performed in which each sample represents a realization of the system. In each

sample, realizations of the sums in Eq. (8) are computed using Eq. (25), after which the system of equations in

Eq. (7) is solved to obtain the vibration field of the wall q2. The energies in the source and receiver room are

then computed from Eq. (9), in which realizations of the sums are computed from Eq. (30). Finally, the sound

reduction index is computed with the measurement formula in Eq. (10).
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5 APPLICATIONS
In this section, the proposed method is applied to compute the airborne sound insulation of a calcium silicate

block wall and a gypsum block wall. A total of 1000 Monte Carlo realizations are computed. The approach

from this paper is compared with two other approaches: a deterministic model, where the sound field in the

emitting and receiver rooms are expanded as a sum of their hard-walled modes, and the hybrid FE-SEA ap-

proach as presented in [8]. In all computations, the source and receiver rooms have a volume of 87m3 and a

reverberation time of 1.5s. The wall size is 3×3.3m2.

First, a heavy single-leaf wall is studied. The wall has a thickness of 25cm and consists of calcium silicate

blocks with mass density ρ = 1800kg/m3, Young’s modulus E = 10.8GPa, and Poisson’s ratio ν = 0.2. The

mean of the predicted sound transmission loss and the corresponding 95% confidence interval are shown in

Fig. 1a. The dips in the insertion loss correspond to the individual wall modes, indicating that, especially at

low frequencies, the modal density of the wall is generally low (n = 0.0274modes/Hz). The critical frequency

of the wall is at 102.5Hz, yet no clear coincidence dip is observed because of the low modal density. Above the

critical frequency, the transmission loss increases with approximately 9dB per octave. The presented approach

corresponds almost perfectly corresponds with the hybrid FE-SEA approach.

(a)

63 125 250 500 1000 2000
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0

20

40

60

80

R
 [d

B]

(b)

63 125 250 500 1000 2000
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0

10

20

30

40

50

60
R

 [d
B]

Figure 1. Mean and 95% interval of the sound reduction index for (a) the calcium silicate wall and (b) the

gypsum block wall computed using three approaches: deterministic approach (blue dash-dotted line), hybrid

FE-SEA approach (red solid line), and the approach presented in this paper (black dashed line).

The second example is a lightweight single-leaf wall with a thickness of 10cm. It consists of gypsum blocks

with mass density ρ = 910kg/m3, Young’s modulus E = 3.15GPa, and Poisson’s ratio ν = 0.2. The mean of

the predicted sound transmission loss and the corresponding 95% confidence interval are shown in Fig. 1b. In

contrast to the heavy wall from the previous section, no clear dips are observed in the harmonic transmission

loss statistics, as the modal density is higher (n = 0.0899modes/Hz). A clear coincidence dip is observed

around the critical frequency of 334.2Hz, behind which the transmission loss increases with approximately 9dB

per octave. Also for this case, a good correspondence with the hybrid FE-SEA approach is obtained, especially

at high frequencies.

6 CONCLUSIONS
In this paper, a novel approach is presented to compute the airborne sound transmission through a wall located

between two diffuse rooms. The approach is therefore a hybrid approach, coupling the deterministic structural

subsystem with the random acoustic subsystems. The computation of the airborne sound transmission is per-

formed through a Monte Carlo simulation, in which each sample corresponds to a realization of the random

ensemble. The natural frequencies in the diffuse rooms are considered to form a sequence of random points
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on the frequency axis, which makes this problem amenable to analysis by random point process theory. The

approach furthermore uses the fact that for any diffuse subsystem the mode shapes saturate to Gaussian random

fields, with a covariance function depending only on wavelength and distance. Two applications are presented,

a calcium silicate block wall and a gypsum block wall. For both applications, the presented approach shows

good correspondence with the hybrid FE-SEA approach.
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