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Abstract
There are different models to estimate the relationships between measurable acoustical parameters and office
workers’ perception, well-being and performance. These models are based on speech transmission index (STI),
fluctuation strength (FS) or percentile level statistics. Whilst STI requires a loudspeaker and is measured in
unoccupied conditions, other metrics, such as FS or percentile level statistics, can be determined in situ during
usual working hours. Nonetheless, the established models have some shortcomings. STI can estimate the effect
of one simulated speech source on short-term memory performance but it cannot assess the effect of office noise
exposure in occupied offices. FS correlates with the impact of temporal-spectral variability of a background
sound on short-term memory performance but it depends on the sound pressure level which does not have an
effect on the short-term memory performance. Percentile level statistics correlate with the speech-to-noise ratio:
higher differences between the 10th and 90th percentile levels measured with fast time weighting lead to lower
number recall performances. As part of this study 110 sound conditions under which subjects have to complete
a number recall task are evaluated with respect to their relationships with these three acoustical parameters. A
cross-validation reveals comparable prediction qualities of the models.
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1 INTRODUCTION
1.1 Effects of Noise on Office Workers

Background speech in open-plan offices can deteriorate the subjective well-being and work performance (1).

Speech from colleagues’ conversations or telephone calls is the most distracting noise source (2).

Auditory background with changing-state features deteriorates working memory performance. This effect of

auditory distraction is especially pronounced in memory for order information, which is known as the irrelevant

sound effect (3). Performance decrements occur when the required cognitive processes conflict with those that

are involved in processing the auditory stimuli, according to the interference-by-process principle (4). Hence,

any sound with sufficient temporal-spectral variability is expected to deteriorate the serial memory. Testing the

mean error rates of subjects in a serial recall task in laboratory conditions is a well-established method to

determine the auditory distraction by background sounds. A serial recall test consists of a series of digits or

letters that are presented sequentially on a computer screen (auditory presentation is also possible) and have to

be recalled at the end of the sequence presentation after a short delay (retention interval).

Room acoustics simulations enable acoustical consultants to predict the effects of acoustical materials and

products on various parameters. The standard ISO 3382-3 suggests the use of reverberation time, spatial decay

of sound pressure level (SPL) and parameters based on the speech transmission index (STI) to evaluate the

acoustical design of open-plan offices. STI, which is a metric to predict the speech intelligibility, is suggested

to predict both subjective noise disturbance and work performance (e.g. Refs. (1, 2, 5, 6)).

1.2 Review of Existing Prediction Models
Hongisto’s model (5) based on the STI predicts the decrease of performance (DP) due to speech of varying

intelligibility. The model is based on three laboratory studies that analyse the performance in number recall or

proofreading. Additionally, one field study is included that evaluates the self-reported daily waste of working
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time before and after an office relocation (2). Since its introduction in 2005 this model has been applied to

the acoustical design and evaluation of open-plan offices (e.g. in the standard ISO 3382-3) and has become a

well-established tool for the acoustical assessment of open-plan offices.

In practice, it is difficult to measure or simulate the STI because the occurring background noise levels

during a usual workday are often unknown. The STI is not defined for fluctuating background noise, as observed

in occupied open-plan offices. In addition, the standard DIN 60268-16 mentions that STI measurements are not

suitable to assess systems that produce speech privacy through sound masking because the STI is not verified for

such conditions. Moreover, the selection of transmission paths remains challenging because it is not clear which

talkers have to be considered as speech sources and which talkers vanish in the background noise. Hongisto’s

model (5) cannot account for multi-talker environments. As the model is fitted to data that contains one talker

under steady-state background noise, the STI is able to predict the speech intelligibility. The DP model may

estimate the disturbing impact of speech intelligibility but not of temporal-spectral variability. Since temporal-

spectral variability correlates with speech intelligibility in sound conditions with one talker under steady-state

background noise, the model correlates highly with the DP.

Schlittmeier et al. (7) model the irrelevant sound effect by using the hearing sensation fluctuation strength

(FS). FS is a predictor of the hearing sensation of fluctuations that are caused by low amplitude or frequency

modulations below approx. 20 Hz modulation frequency. FS peaks at about 2 Hz to 5 Hz which is equivalent

to the typical syllabic rate of speech (8). The model applies to speech as well as non-speech sounds. The FS

correlates well with the sensation of amplitude or frequency modulations but not with the DP due to temporal-

spectral variability of sounds. FS is not very sensitive within the range of typical office sounds consisting of

speech and non-speech sounds. The FS can vary by decades between masked and unmasked speech while

changes in the speech-to-noise ratio result in rather small changes in FS. In the following, the speech-to-noise

ratio denotes the level difference between the A-weighted SPL of a distracting speech sound and the A-weighted

SPL of a masking or background sound.

Liebl et al. (9) review both models, concluding that Hongisto’s model (5) cannot account for distracting

non-speech sounds such as office noise or background music while Schlittmeier’s model (7) cannot account for

the additional performance decrement of speech as compared to speech-like noise. The main finding of the

study can be outlined by the mean error rates that are observed during variable speech-like noise: STI cannot

account for the disturbing impact of the temporal-spectral variability while FS overestimates the DP because

the FS is similar to a speech signal that causes a much higher DP. Liebl et al. (9) mention that the approach

based on the STI is often misunderstood by facility managers and office owners which equate the STI with

speech intelligibility and semantic content of background speech. However, the irrelevant sound effect denotes

a phenomenon which is rather based on temporal-spectral characteristics of the acoustic background regardless

of whether subjects understand the background speech.

In contrast to Finland’s National Building Code that sets STI limits, German standards (such as VDI 2569

or DIN 45645-2) avoid the use of the STI. The rating level Lr, that is based on A-weighted energy-equivalent

SPL measurements and the consideration of penalties for impulsiveness, tonality and informational content,

provides the basis for the assessment of noise immissions in office buildings in Germany. The set values that

are described in the standard guideline VDI 2058-3 are not expected to correlate with the subjective perception

or working memory performance of office workers that are subjected to office noise (10). Hence, there is a need

to improve the assessment of this parameter or to identify a different metric that enables in situ measurements

and correlates with the effect of office noise on workers.

1.3 Aim of This Study
This paper compares a new approach to predict the working memory performance under distracting back-

ground speech based on percentile level statistics with the established models that are based on STI and FS.

Based on practical experiences in German open-plan offices, the new model can be applied during the everyday

work of acoustical consultants and occupational safety and health institutes. By using percentile levels (SPL that
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is exceeded for a defined percentage of time during the measurement time), the SPL of fluctuating speech peaks

and the SPL of stationary background noise are estimated. Zuydervliet et al. (11) suggest that background levels

can be described by the 90th percentile LAF,90% and that activity levels can be described by the 10th percentile

LAF,10%. The difference of these two levels correlates with the speech-to-noise ratio at the receiver position.

Kaarlela-Tuomaala et al. (2) analyse similar level statistics in a study that compares the subjective perception of

an acoustic environment during a relocation from private office rooms to an open-plan office and conclude that

the variability of SPL is not related to the self-rated disturbance caused by noise. However, the study considers

only the percentile levels LA,1% and LA,99% and the measurements do not distinguish between speech sounds

from the person working at the respective workstation and distracting background speech from colleagues.

In contrast to Hongisto’s model (5), the suggested model does not require a loudspeaker to simulate a

speech source, and hence it can be applied to occupied open-plan offices and it can consider multi-talker sound

environments. Similar to Schlittmeier’s model (7), the overall sound condition is analysed at receiver points

instead of the STI on distinct transmission paths. Contrary to the STI, the model does not take reverberation

into account. Reverberation times in open-plan offices are usually between 0.3 s and 0.7 s, and hence do not

have a notable impact on the resulting STI values. Compared to the FS, the presented predictor is easier to

determine because the computational cost are notably lower allowing for measurements with conventional sound

level meters. The model is developed with data points that contain one speech sound similar to Hongisto’s

study (5).

2 METHODS AND MATERIALS
2.1 Sound Conditions

Twelve laboratory experiments from ten different studies are considered. Table 1 provides an overview of the

studies. All studies comprise two control conditions: the first control condition is a distracting speech signal and

the second control condition consists of silence or stationary noise at moderate SPL (25 dB). The other sound

conditions contain speech with different speech intelligibility. The speech intelligibility is reduced by adding

a masking sound to the signal. Different masking sounds are used, such as stationary noise, babble, reversed

speech, nature sounds, and ventilation sounds. The speech-to-noise ratio varies between –12 dB and +4 dB. One

sound condition from the study by Martin and Liebl (12) is excluded from the further analyses because the

participants are subjected to their favourite music, and hence the sound condition is different for each subject.

Table 1 – Overview of the included studies

No. Authors (reference) Primary comparison Presentation

1 Renz et al. (13, 14) reversed speech and stationary noise headphones

2 Renz et al. (15) stationary and babble masker headphones

3 Liebl et al. (9) steady and variable speech-like noise headphones

4 Liebl et al. (16) different ventilation sounds headphones

5 Martin and Liebl (12) various masking signals headphones

6 Renz et al. (17) spatial masking release headphones

7 Renz et al. (18) local and conventional masking loudspeakers

8 Ebissou et al. (19) use of STI for annoyance assessment loudspeaker

9 Ellermeier and Hellbrück (20) effect of speech-to-noise ratio headphones

10 Jahncke et al. (6) effect of speech intelligibility headphones

The experimental design of all experiments is a one-way repeated measures design with five to twelve levels

according to the tested sound conditions, i.e. all subjects perform the test during the same sound conditions.

During each sound condition the subjects perform a serial recall task where they have to memorise a sequence

of nine digits and recall it in the exact order of presentation after a short retention interval. Each item that
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is not recalled correctly at the presented serial position is counted as an error. The retention interval varies

between the studies (0–10 s). The study by Jahncke et al. (6) does not include a serial recall task but uses free

recall by visual presentation of lists of ten words. For the studies with serial recall the percentage of incorrectly

recalled digit positions of all tested sequences of one condition (mean error rate) is determined. In the study by

Ellermeier and Hellbrück (20) subjects can leave blanks empty. In this case a random integer between 1 and 9

is chosen for this serial position. Results that are only depicted in graphs are estimated (studies by Ellermeier

and Hellbrück (20) and Jahncke et al. (6)). The sound signals that are used by Ellermeier and Hellbrück (20)

are generated manually, and thus they may differ from the original sound conditions.

The absolute performance change, the DP, is calculated as the difference in the mean performance between

the silent control condition and the analysed sound condition or as the difference in the mean error rates be-

tween the sound condition and the silent control condition:

DP = Psilence −Pcondition. (1)

In some studies the silent control condition comprises stationary noise at moderate levels which does not

have an effect on the working memory performance (e.g. Ref. (20)).

2.2 Predictor Variables
The percentile level difference LAF,10%–LAF,90%, the STI, and the FS are considered as predictor. SPL and

FS values are computed with the software ArtemiS version 12.05.1512 (HEAD acoustics GmbH, Herzogenrath,

Germany). The STI values are reported in most studies or otherwise they are determined by taking the SPLs

of the speech and masking signals into account (21). In binaural listening conditions the maximum values at

both ears are used because prior analyses showed that the serial recall performance correlates with the STI and

FS values at the advantaged ear (cf. Ref. (17)) and because the standard DIN 60268-16 suggests the use of the

higher STI value if binaural recordings are performed with a dummy head.

2.3 Model Fitting
A three-parameter logistic model based on the logistic function is considered:

f (x) =
L

1+ exp(−k(x− x0))
, (2)

with the curve’s maximum value L, the steepness of the curve k, and the x-value of the curve’s midpoint x0.

The use of a logistic function seems appropriate because it can model the S-shaped curve that is commonly

observed for sentence intelligibility and DP under speech with varying speech-to-noise ratios (cf. Refs. (5, 22)).

The models are determined in R (23) with the software RStudio Version 1.1.383 (RStudio, Inc., Boston, MA,

USA). The model fitting is based on two steps of a cross-validation. Firstly, the 89 DP values of all studies that

are performed at the Fraunhofer Institute for Building Physics (first seven studies in Table 1) are considered as

response variable to determine and validate the models. Secondly, the 21 DP values of the three studies that

are performed at other research groups with different experimental conditions (last three studies in Table 1) are

considered to validate the determined models.

A repeated eleven-fold cross-validation with ten repetitions is performed to determine the models. Repeating

a k-fold cross-validation can be used to effectively increase the precision of the estimates while maintaining a

small bias (24). The model fitting is based on the following four steps, as described by Kuhn and Johnson (25):

1. Ten randomly ordered lists are created that contain the 89 data points of the predictor and the DP values.

2. For each of these 10 lists, 8 train sets with 78 data points and 8 test sets with the remaining 11 data

points are created, while always considering 11 different data points.

3. The respective model fits for each of the 80 train sets are determined.
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4. The average values of the model parameters are calculated.

The validation procedure is as follows:

1. For each of the 80 test sets the root-mean-square error (RMSE), which describes the standard deviation

of the differences between the predicted values and the observed values of the test set, is computed.

2. The average values of all 80 determined RMSE values are calculated and compared between the consid-

ered models.

The RMSE is determined as follows:

RMSE =

√
∑n

i=1 (ŷi − yi)
2

n
, (3)

with the predicted values ŷi and the observed values yi over the n = 11 data points.

Besides the RMSE values, the Pearson correlation coefficients rxy and Spearman’s rank correlation coeffi-

cients rS are determined to compare the different models. The Pearson correlation coefficient is not suitable to

compare non-linear relationships. The values are still computed because correlation coefficients are reported in

similar studies (e.g. Refs. (1, 7)).

In the second step, the RMSE, rxy and rS values are calculated across the 21 additional data points.

3 RESULTS
The results of the cross-validation are outlined in Table 2. STI results in the lowest vlues of rS and RMSE.

STI, FS and LAF,10%–LAF,90% reveal comparable results with respect to rS and RMSE. LAF,10%–LAF,90% appears

to be suitable to predict the working memory performance under distracting background speech.

Figures 1 and 2 illustrate the determined models in step 1 and step 2, respectively. The DP over the STI

and LAF,10%–LAF,90% seems to follow an S-shaped curve. It should be noted that FS and LAF,10%–LAF,90% show

a wide range of values because they are not limited to values between 0 and 1. The FS values range from 0

to 0.37, but the change in DP occurs over a much smaller range (0–0.01).

Table 2 – Cross-validation results of the working memory performance models: Pearson correlation coefficient

rxy, Spearman’s rank correlation coefficient rS, and the RMSE averaged over all 80 test sets. ∗, ∗∗, ∗∗∗ Represent

significance at the p< .05, .01, and .001 levels, respectively

Predictor variable Response variable rxy,1 rS,1 RMSE1 rxy,2 rS,2 RMSE2

STI DP 0.74∗∗∗ 0.82∗∗∗ 2.5 0.88∗∗∗ 0.90∗∗∗ 3.9

FS DP 0.36∗∗∗ 0.74∗∗∗ 2.6 0.79∗∗∗ 0.84∗∗∗ 4.9

LAF,10%–LAF,90% DP 0.53∗∗∗ 0.75∗∗∗ 2.7 0.47∗∗∗ 0.73∗∗∗ 4.0

4 DISCUSSION
STI, FS and LAF,10%–LAF,90% show comparable prediction accuracy of working memory performance under

distracting background speech. The presented model based on LAF,10%–LAF,90% can be used to estimate the re-

sulting DP in occupied offices. The metric is easy to measure in situ. Since occupational safety and health in

Germany requires the measurement of rating levels Lr in occupied offices the suggested metric can be deter-

mined without additional cost. Whilst the STI is determined on one distinct transmission path, the presented

model can consider multi-talker environments.

Some shortcomings remain that may limit the applicability of the presented model and require further re-

search. First, all considered data includes only a single voice that is masked by multiple sounds; multi-talker
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Figure 1 – Plots of the fitted and cross-validated working memory performance models of the response variable

DP over the predictor variables STI (a), FS (b), zoomed area of FS (c), LAF,10%–LAF,90% (d), and zoomed area

of LAF,10%–LAF,90% (e). The solid line shows the determined model. A legend is depicted in (f)
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Figure 2 – Plots of the additionally considered data points of the response variable DP over the predictor

variables STI (a), FS (b), and LAF,10%–LAF,90% (c). The solid line shows the determined model in step 1
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environments are not included. It remains unclear if the model can be applied to complex binaural environments,

for instance, an office environment with multiple talkers that are spatially separated. Second, LAF,10%–LAF,90%

estimates a ratio between the speech level peaks and the ambient noise level but it may not sufficiently account

for the effects of spectral fluctuations and semantic content. Further analyses are necessary to verify whether

this model can be applied to in situ measurements to assess the acoustic satisfaction and work performance

under distracting background speech.

5 CONCLUSIONS
Hongisto’s model (5) based on the STI is an established model for the acoustical design of open-plan offices.

According to the performed analyses, the maximum DP occurs at STI values above 0.5, and hence occurring

STI values should be below 0.5. Nevertheless, the STI cannot be used to measure the office workers’ exposure

to noise and to assess its impact on the individual’s subjective perception and performance impairment, which

is commonly done by occupational safety and health practitioners by means of SPL measurements.

Schlittmeier’s model (7) based on the FS is difficult to apply in practice because the FS depends on the

absolute SPL and there are only a few software tools available to compute the FS. In contrast to the FS,

the percentile level difference LAF,10%–LAF,90% can be determined in situ as part of SPL measurements with

conventional sound level meters.
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