Acoustic properties test of materials by the dual-microphones broadband impulse method

Yunke Huang1, Hong Hou2, Zhengyu Wei3, Shuai Zhang4

1 Northwestern Polytechnical University, P.R.China
2 Northwestern Polytechnical University, P.R.China
3 Northwestern Polytechnical University, P.R.China
4 Northwestern Polytechnical University, P.R.China

ABSTRACT

The paper presents the dual-microphones broadband impulse method to measure sound characteristics of acoustic materials. Based on the basic composition and processing of sound pulse propagation in impedance tube, the pulse wave propagation model is respectively proposed, and sound pressure at any location of the tube can be expressed. Broadband impulse is generated in the tube and excited the tube with a sample at the terminal end. Sound pressure signals are acquired at both ends. Converting these two acquired signals into time domain then the complex reflection coefficient and absorption coefficient in continuous band range are obtained. Sound characteristics of a sponge sample and a porous glass sample have been tested by the dual-microphones broadband impulse method. Test results are compared with the measured results by impedance tube method. The experimental results show that this method has improved the traditional impulse method without requiring the separation of complete impulse signal and has a significant value in application.

Keywords: Broadband impulse method, Acoustic performance, Impedance tube

1. INTRODUCTION

At present, performance tests of aero-acoustic material have been studied a lot, and absorption or transmission performance studies have most comprehensive application. Reverberation method, which utilize Sabine formula[1] to calculate absorption coefficient by measure reverberation time, is in the most common use for large samples. The experimental repeatability of this method is undesirable due to the difference of diffusion degree in each reverberation room, despite the impact of edge effect. Simultaneously, impedance tube is an essential equipment in small sample tests in which standing wave ratio method and transfer function method are considered as major broadband test methods. Sound pressure in multiple locations at impedance tube have to be measured to compute standing wave ratio and furthermore the absorption coefficient can be calculated in standing wave ratio method[2]. The method is rarely used due to the sparing of time and limitation of test frequency domain. Transfer function method[3] is an improvement on the basis of standing wave ratio method. Broadband white Gaussian noise is used in the measurement and then normal absorption coefficient as well as impedance ratio are determined by sound pressure transfer function between two stable locations. Sound pressure phase information can be sufficiently applied to enhance work efficiency. However, this method requests to acquire sound pressure signal with two exactly matched microphones which turn to studying phase calibration of two microphones in practical application[4,5].

Recently years, pulse echo method, which is convenient for site tests, is mainly used in acoustic properties tests. X.Jing[6] has generated arbitrary pulse in the space based on Vera inverse filtering; Shui Li[7] has improved the source of pulse signal by inverse filter principle; and Garai and Mommertz[8] have studied site test technique with MLS signal. Shihua Xu, Hong Hou[9] etc. have

1 seahyk0909@126.com
2 Corresponding author, houhong@nwpu.edu.cn
3 wzytianming@gmail.com
4 shuaizhang_nwpu@163.com
generated good pulse waveform in sound tube, based on which broadband pulse absorption and transmission measurement methods are proposed by Liang Sun, Hong Hou [10,11]. These methods adopt broadband short pulse whose incident wave and reflex wave can be completely separated to measure reflectance and transmission loss of materials, successfully reducing the measurement frequency. Yang Dai [12] etc. have researched for postpositional inverse filtering method, improving the broadband pulse test method.

In order to separate incident wave and reflected wave in broadband pulse test method, pulse width would be shorten as well as ensuring excellent waveform. This paper has researched for impedance tube pulse propagation model and obtained sound pressure signal expression at any location of the tube. Based on this model, dual-microphone broadband impulse method is proposed. Equivalent sound pressure signal related to complex reflectance and time delay can be obtained via processing sound pressure signals at two locations of the tube, and complex reflectance is measured without separation of pulse wave. Two materials are tested using this method in a small impedance tube (effective frequency 500-6400Hz). The complex reflectance and absorption coefficient are compared with the experiment data measured in transfer function method given by B&K company test system, and the coincidence of test results illustrate the excellent precision of dual-microphone broadband impulse method.

2. IMPEDANCE TUBE PULSE PROPAGATION MODEL

Pulse tube is used to measure absorption performance with a sample in the terminal. Let L be the length of the tube and $x(t)$ be the input pulse of the tube test system. Pulse transfer system contains pulse responses of the tube’s terminal reflex system $h_1(t)$ (the system input is the first incident wave and the output is the first reflex wave), the tube’s orifice reflex system $h_2(t)$ (the system input is the first reflex wave and the output is the second reflex wave), and the time-delay system $d(x,t)$.

According to system transfer principle, the transfer function of tube’s terminal reflex system $h_1(t)$ is the complex reflectance of the material, and the transfer function of tube’s orifice reflex system $h_2(t)$ is the complex reflectance of the orifice.

The first incident wave $p_i^{(1)}(x,t)$ acquired at point x from the orifice is,

$$p_i^{(1)} = x(t) \ast d(x,t) \quad (1)$$

where $d(x,t)$ is the time-delay system pulse response with delay of x/c seconds. Moreover, the first incident wave is right spreading.

As the result of the reflection of the first reflex wave from the terminal, the first reflex wave $p_r^{(1)}(x,t)$ at location x point is

$$p_r^{(1)}(x,t) = p_i^{(1)} \ast h_1(t) \ast d(2L - 2x,t) \quad (2)$$

where $d(2L - x,t)$ is the time-delay system pulse response with the delay of $(2L - x)/c$ seconds.

The first reflex wave is left spreading.

As the result of the reflection of the first reflex wave from the orifice, the second reflex wave $p_r^{(2)}(x,t)$ at location x point is

$$p_r^{(2)}(x,t) = p_i^{(1)} \ast h_1(t) \ast h_2(t) \ast d(2L,t) \quad (3)$$

$d(2L,t)$ is the time-delay system pulse response with the delay of $2L/c$ seconds. The second reflex wave is right spreading.

Based on the relationship above, the right spreading wave at point x after infinite inter-reflection in the tube is as

$$p_s(x,t) = p_i^{(1)} \ast \left(\sum_{n=0}^{\infty} (d(2L,t) \ast h_1(t) \ast h_2(t))^n \right) \quad (4)$$
Similarly, considered the transfer process of left spreading wave, treating the first reflex wave as the first incident wave of the left spreading wave, the left spreading wave at point \(x \) after infinite inter-reflection in the tube is as

\[
P_L(x,t) = p_r(x,t) \left(\sum_{n=0}^{\infty} (d(2L,t) * h_1(t) * h_2(t))^n \right)
\]

\[
= p_r(x,t) h_1(t) * d(2L-2x,t) \left(\sum_{n=0}^{\infty} (d(2L,t) * h_1(t) * h_2(t))^n \right)
\]

where \(K^n = K * K * \ldots * K \).

Thus, the total sound pressure at \(x \) can be expressed as

\[
P(x,t) = P_L(x,t) + P_L(x,t)
\]

\[
= p_r(x,t) h_1(t) * d(2L-2x,t) * H(2L,t)
\]

(6)

where \(H(2L,t) = \sum_{n=0}^{\infty} (h(2L,t) * h_1(t) * h_2(t))^n \).

From equation(6), if the first incident wave \(p_{i1}(x,t) \), the transfer function of terminal reflex system(material complex reflection coefficient) \(h_1(t) \) and the transfer function of the orifice reflex system(orifice complex reflection coefficient) \(h_2(t) \) are known, the sound pressure at any location of the tube can be inferred.

3. Dual-microphone Broadband Impulse Method

At any two points \(x_1, x_2 \), the first incident wave are respectively as

\[
p_{i1}(x_1,t) = x(t) * d(x_1,t), \quad p_{i2}(x_2,t) = x(t) * d(x_2,t)
\]

(7)

Thus, these two incident wave follow the below given relationship,

\[
p_{i1}(x_2,t) = p_{i1}(x_1,t) * d(x_2-x_1,t)
\]

(8)

From the derivation of the prior chapter, the total sound pressure at \(x_1 \) and \(x_2 \) can be expressed as

\[
P(x_1,t) = p_{i1}(x_1,t) \cdot h_1(t) \cdot (1 + d(2L-2x_1,t)) \cdot H(2L,t)
\]

(9)

\[
P(x_2,t) = p_{i2}(x_2,t) \cdot h_1(t) \cdot (1 + d(2L-2x_2,t)) \cdot H(2L,t)
\]

(10)

Convoluted sound pressures in time domain, we let \(P = P(x_1,t) - P(x_2,t) * d(x_2 - x_1,t) \) and simplify it as

\[
P_i = P(x_1,t) - P(x_2,t) * d(x_2 - x_1,t)
\]

\[
= p_{i1}(x_1,t) [1 - d(2x_2 - 2x_1,t)] \cdot H(2L,t)
\]

(11)

Similarly, let \(P_r = P(x_2,t) - P(x_1,t) * d(x_2 - x_1,t) \), combined with equation (7), we infer that

\[
P_r = P(x_2,t) - d(x_2 - x_1,t) * P(x_1,t)
\]

\[
= p_{i2}(x_2,t) \cdot d(2L - x_1 - x_2,t) \cdot [1 - d(2x_2 - 2x_1,t)] \cdot h_1(t) \cdot H(2L,t)
\]

(12)

According to equation (11) and (12), there is a relationship as below

\[
P_r = P_i \cdot d(2L - x_1 - x_2) * h_1(t)
\]

(13)
\(P_i\) and \(P_r\) can be calculated via sound pressure signals acquired by microphones at points \(x_1\) and \(x_2\), then \(h(t)\) can be inferred by deconvolution based on the equation (13). Furthermore, complex reflectance characteristics \(r(\omega)\) in frequency domain would be worked out by FFT transformation. Absorption coefficient can be expressed as
\[
\alpha(\omega) = 1 - [r(\omega)]^2
\] (14)

4. Experimental Test results

4.1 Measuring Equipment

In the experiment, type SW031 acoustic tube having diameter of 29.9 mm is used to test acoustic properties of a sponge material and an anti-explosion material. Sample is put at the end of the tube with an rigid backing sticking on it. Two microphones are put into the tube wall vertically. Loundspeaker and microphones are connected with power amplifier and data acquisition instrument which are controlled by a computer.

4.2 Pulse Signals

The effective frequency scope is from 500Hz to 6400Hz, thus two signals as below are designed for small sample measurement: a zero-phase signal with 3500Hz center frequency, and a Butterworth signal with 7000Hz cutoff frequency. The characteristics of these two signals are as below.
4.3 Test Results
4.3.1 Sponge material
Two signals mentioned above are used in measurement of sponge material. Signals acquired by microphones are as below,

![Graph 1](image1.png)

![Graph 2](image2.png)

Fig.3 – (a) acquisition zero-phase signal (b) acquisition Butterworth signal

As shown in Figure3, in these two locations, the zero-phase signal with 3500Hz center frequency and the Butterworth signal with 7000Hz cutoff frequency are not complete separation, meaning that incident waves and reflex waves cannot be intactly extracted.

Processing sound pressure signals with equation (11) and (12), complex reflectance and absorption coefficient will be calculated by equation (13) and (14). Then compare these consequences with transfer function method results by B&K company test system.

Measurement outcomes with zero-phase signal as excitation are

![Graph 3](image3.png)

![Graph 4](image4.png)

Fig.4 – (a) complex reflectance result used zero-phase signal (b) absorption coefficient result used zero-phase signal

Measurement outcomes with Butterworth signal as excitation are as below
As shown in Figure 4 and Figure 5, the amplitude and phase of complex reflectance measured by two signals are coincident with the test result of transfer function method. Observing the curve of absorption coefficient, we can find out that the experimental error between absorption coefficients tested by Butterworth signal in this method and transfer function method are within 5%. The spectrum range of zero-phase signal is not as wide as Butterworth signal’s, thus zero-phase signal test data in high frequency over 5000Hz has about 10% experimental error with transfer function method test data. Meanwhile, there are some fluctuations in transfer function method test process, therefore we average measured value of six times. Through comparison testing, it is obvious that material acoustic performance can be obtained accurately.

To research the repeatability of this method, we measured in each signal for six times independently, and regard the standard deviation of absorption coefficient average value as class A measurement uncertainty, namely:

$$u_{\alpha} = \frac{1}{n} \sqrt{\sum_{i=1}^{6} (\alpha_i - \bar{\alpha})^2}$$ \hspace{1cm} (15)$$

In frequency points 1024, 2048, 3072, 4096, 5120, 6144Hz, class A measurement uncertainties are as follow:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>1024Hz</th>
<th>2048Hz</th>
<th>3072Hz</th>
<th>4096Hz</th>
<th>5120Hz</th>
<th>6144Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero-phase</td>
<td>0.0149</td>
<td>0.0128</td>
<td>0.0139</td>
<td>0.0143</td>
<td>0.0140</td>
<td>0.0134</td>
</tr>
<tr>
<td>Butterworth</td>
<td>0.0352</td>
<td>0.0303</td>
<td>0.0280</td>
<td>0.0265</td>
<td>0.0254</td>
<td>0.0246</td>
</tr>
</tbody>
</table>

4.3.2 An anti-explosion material

To verify the method further, an anti-explosion material is tested in this paper. The same signals mentioned in previous section are used in the process. Disposed of sound pressure signals acquired by
microphones in two location points, complex reflectance and absorption coefficient are worked out. The comparison of two methods are as below:

![Comparison of complex reflectance by zero-phase signal test and transfer function test](image1)

![Comparison of absorption coefficient of zero-phase signal test and transfer function test](image2)

Fig. 6 – (a) complex reflectance result used zero-phase signal (b) absorption coefficient result used zero-phase signal

![Comparison of reflectance by Butterworth signal test and transfer function test](image3)

![Comparison of absorption coefficient of Butterworth signal test and transfer function test](image4)

Fig. 7 – (a) complex reflectance result used Butterworth signal (b) absorption coefficient result used Butterworth signal

The absorption coefficients measured by two signals are coincident with the test results of transfer function method. Below 5000Hz, test result by zero-phase signal is a little greater than transfer function method result with average 0.05 difference, while outcomes of Butterworth signal measurement and transfer function method are adjacent, with 0.01 difference. Over 5000Hz, measurement results both are slightly lower than transfer function method result.

Class A measurement uncertainties calculated by six times independent measurement are as below:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>1024</th>
<th>2048</th>
<th>3072</th>
<th>4096</th>
<th>5120</th>
<th>6144</th>
</tr>
</thead>
</table>

Table 2 – Measurement uncertainties of this anti-explosion material test by two signals.
5. CONCLUSIONS

In this paper, we proposed a dual-microphone broadband impulse method based on impedance tube pulse propagation model to solve the problem about signal separation in impedance tube. Complex reflection coefficient can be obtained by this method through acquiring sound pressure signals at two points of the tube, without need of separation of incident wave and reflex wave in traditional test method.

Absorption coefficients of two samples are measured by dual-microphone broadband impulse method, and compared with the test result given by transfer function method. Complex reflectance and Absorption coefficient results of these two methods are mainly consistent in 1000-5000Hz. Due to the property of pulse signals and the defect of transfer function method itself, there are a little bit difference in test results in higher frequency range. Meanwhile we calculate measurement uncertainties to verify the repeatability of this method. Experiments show that dual-microphone broadband impulse method is an effective acoustic property test method.

ACKNOWLEDGEMENTS

This work was financially supported by the National Natural Science Foundation of China No.11474230, Science and technology research and development program of Shaanxi Province No.2016GY-111, and the Fundamental Research Funds for the Central Universities of Northwestern Polytechnical University No. 3102014ZD0038.

REFERENCES

2. ISO10534-1 Acoustics—Determination of Sound Absorption Coefficient and Impedance or Admittance—Part 1: Impedance Tube Method [S].
9. Shihua Xu, Hong Hou. A Method to develop a Digitally-controlled Sound Impulse Generator.