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ABSTRACT
To facilitate efficient predictions of outdoor sound propagation, meteorological and refractive conditions are
often partitioned into statistical strata (classes). Average predictions are then made by weighting individual
predictions from each stratum. Some examples are Marsh’s scheme based on Pasquill stability classes, the
Harmonoise scheme based on a log-linear parameterization of the effective sound-speed profile, and various
schemes utilizing Monin-Obukhov similarity theory parameters. The success of stratified sampling depends
on whether useful classes can be chosen, in the sense of efficiently capturing the diversity of propagation
conditions, while reducing the variance within the classes. The overall reduction in error variance can be
quantified using equations known from statistics. In this paper, we adopt such an approach to analyzing the
performance of several sampling strategies, and illustrate situations for which stratified sampling provides
improved variance reduction.

Keywords: Numerical Modeling, Statistical Methods
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1. INTRODUCTION
Many schemes have been proposed for categorizing atmospheric and ground conditions according to their
impact on outdoor sound propagation. At the simplest, ground categories may specify whether the surface is
acoustically hard (such as asphalt or frozen ground) or soft (such loose soil or snow). Atmospheric categories
may, for example, specify whether refraction is strong upward, weak upward, intermediate, weak downward,
or strong downward. The purpose for formulating such classes of conditions is usually to create efficient,
heuristic schemes for predicting sound levels. For example, a sound-level prediction might be made for each
category based on experimental data or a more intensive numerical method (such as the parabolic equation),
and then this prediction would be applied to all other ground and atmospheric conditions falling into that
category.

Some of the most widely used schemes for refractive categories have been based on classes or theories
originally appearing in the meteorological literature. For example, Marsh [1] employed Pasquill’s stability
classes [2] for turbulent diffusion modeling (based on wind speed and solar radiation) to partition sound
propagation conditions into six refractive classes. Zouboff et al. [3] also formulated refractive classes based
on Pasquill. Raspet and Wolf [4] partitioned calculations by wind speed and direction intervals. Heimann
and Salomons [5] approximated Monin-Obukhov similarity theory (MOST) profiles with log-linear profiles
and then formulated a scheme with 25 refractive classes based on ranges of the log-linear profile parameters.
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The refraction categories or other types of propagation classes can conceivably be employed in at least a
couple different ways. First is the classical problem of variance reduction — we wish to make an accurate
prediction from as few samples (numerical predictions or experimental observations) as possible. If the
classes are chosen in a manner that successfully captures most of the variability in the process, we can
accurately estimate the quantity of interest in each class with relatively few samples.

The other method of employment is perhaps more common in outdoor sound propagation modeling. This
involves (1) running a relatively expensive computational method (the parabolic equation, for example) one
or more times to predict a representative sound intensity for each class, (2) determining the probabilities for
each class at a particular site of interest, and (3) determining an estimate for the overall mean as a weighted
sum of the predictions for the individual classes. Note that this approach involves generating the predictions
for each class just once; the predictions are then assumed to be applicable to any site.

Propagation classes might also be motivated from the perspective of parsimony in outdoor sound prop-
agation predictions. Although the fundamental physics underlying sound propagation are well understood,
modeling capabilities are typically inadequate to capture all of the intricacies. Thus, simpler and less compu-
tationally expensive (lower order) modeling approaches may be more consistent with the actual predictability
of outdoor sound propagation.

This paper endeavors to examine the problem of categorizing sound propagation conditions from a broader,
more fundamental perspective than is normally done. The goal is to explicitly examine the statistical benefits,
qualitative and quantitative, of such schemes, and to help guide future research towards more optimally for-
mulating the categories. We point out that the fundamental problem is hardly novel in the realm of statistics:
it is a particular example of stratified sampling. Nonetheless, from a research perspective outdoor sound
propagation provides a very interesting application of stratified sampling, as it invokes many challenging
issues related to modeling and quantifying uncertainties in a complex, highly multidimensional system.

The first section of this paper overviews the general analytical framework of stratified sampling and vari-
ance reduction. The second section describes an application to sound refraction outdoors.

2. FORMULATION OF THE SAMPLING PROBLEM
2.1 Parameters and Distributions
For present purposes, we view environmental parameters impacting the sound propagation as random vari-
ables. Such parameters may include the porosity and static flow resistivity of the ground, landcover properties
such as vegetation and man-made structures, and meteorological quantities such as the friction velocity and
surface heat flux. These parameters vary randomly in time, on scales from minutes to seasonal, and in space,
on scales from meters to globally (aleatory uncertainties). We may also be compelled to represent the envi-
ronmental parameters as random variables because our knowledge is limited (epistemic uncertainties) [6].

Sound propagation predictions are made for a particular sample (or samples) of the environmental pa-
rameters, the sample formally being drawn from an assumed joint probability density function (pdf) of the
parameters. For example, if the wind direction is variable, we could specify a distribution for it, randomly
sample from the distribution, and then perform a propagation calculation for each sample direction. Quanti-
ties of interest, such as the mean and variance of the squared sound pressure, can then be estimated from the
ensemble of predictions.

Mathematically, we write the probability that a continuous random variable Θ will take on a value in the
interval [θ, θ + ∆θ] as

Pr[θ ≤ Θ ≤ θ + ∆θ] =

∫ θ+∆θ

θ

g(ξ) dξ, (1)

where gΘ(θ) is the single-variate pdf. The cumulative distribution function (cdf), GΘ(θ), is the probability
that Θ will take on a value less than or equal to θ, namely GΘ(θ) = Pr[Θ ≤ θ] =

∫ θ
−∞ gΘ(ξ) dξ. By

differentiating the integral, we have gΘ(θ) = dGΘ(θ)/dθ.
The uniform, beta, normal (Gaussian), log-normal, exponential, and Rayleigh distributions are partic-

ularly useful for continuous random variables, and often appear in problems involving wave propagation
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and scattering. The type of distribution and parameter values depend greatly on the application. The best
practice is generally to employ the simplest distribution consistent with the known constraints and available
observations.

The definitions for a single variable can be readily extended to a set of M random variables grouped as
a vector, Θ = [Θ1,Θ2, . . . ,ΘM ]. In our case, this set represents all of the environmental parameters which
we wish to model as being random or uncertain. The joint pdf of these variables, gΘ, is defined such that

Pr[Θ ∈ Ω′] =

∫
Ω′
gΘ(θ1, . . . , θM) dθ1 . . . dθM , (2)

where Ω′ is a subdomain within the overall domain Ω upon which Θ is defined (Ω′ ∈ Ω). The cdf is
defined as G(θ1, . . . , θM) = Pr[Θ1 ≤ θ1 · · ·ΘM ≤ θM ]. If the variables in Θ are independent, one has
gΘ(θ1, . . . , θM) = gΘ1

(θ1) · · · gΘM
(θM).

The expected value of a function I(θ) can be calculated from the integral [7, 8]

〈I〉 =

∫
Ω

I(θ)gΘ(θ) dθ. (3)

The integrand I(θ) may represent the squared magnitude of the sound pressure (intensity), excess attenuation,
sound level, or other quantity of interest. It is convenient to transform independent variables to uniform
distributions in the range [0, 1]. This can be done by setting ψm(θm) = GΘm

(θm), where GΘm
(θm) is the

cdf for the mth parameter (m = 1, . . . ,M ), resulting in

〈I〉 =

∫
U

I(θ(ψ)) dψ. (4)

Here U indicates the M -dimensional unit volume. The values of the variables are then determined from the
inverse cdfs: θm = G−1

Θm
(ψm).

2.2 Ordinary Monte Carlo Sampling
Many science and engineering problems involve a large number of random parameters, thus making Eq. (3)
and its variants highly multidimensional [9, 10]. A conventional numerical approach to integrating Eq. (3)
would involve discretizing the integral into a finite number of intervals along each of the M variable axes.
However, the number of evaluations of the integrand then increases geometrically according the number of
dimensions in the integral (random variables or parameters). Stochastic techniques are particularly valuable
in such situations, as all of the parameters can be sampled simultaneously [9, 11]. The basic process involves
generating N samples of the parameter set Θ (Θn, n = 1, 2, . . . , N ). The function I(Θ) is evaluated for
each of these samples. The average of these N evaluations, Î , then gives an estimate for the mean 〈I〉:

Î =
1

N

N∑
n=1

I(Θn). (5)

The variance of the estimate is given by

σ2
Î

=

〈[
Î − 〈I〉

]2
〉

=
1

N2

〈{
N∑
n=1

[I(Θn)− 〈I〉]
}2〉

. (6)

A general result for σ2
Î
, which does not assume Î is an unbiased estimator for 〈I〉, is [6]

σ2
Î

=
1

N2

N∑
n=1

σ2(Θn) +
1

N2

[
N∑
n=1

b(Θn)

]2

, (7)

where
σ2(Θ) =

〈
[I(Θ)− 〈I(Θ)〉]2

〉
(8)
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Figure 1: Comparison of several strategies to obtain 16 samples of two independent, uniform random variables.
(a) Ordinary Monte Carlo sampling (MCS). (b) Stratified sampling with four unequal strata. (c) Ordinary Latin
hypercube sampling (LHS) with an iterative maximin criterion.

and
b(Θ) = 〈I(Θ)〉 − 〈I〉 (9)

are the variance and bias of the integrand as a function of Θ, respectively.
The preceding discussion describes ordinary Monte Carlo sampling, or MCS. Typically, the Θn are drawn

independently from the joint pdf. Then each evaluation of the integrand is an equally likely value, and Î is
thus an unbiased estimate for 〈I〉, which converges to the correct value as N increases. The variance of the

estimate then reduces to simply σ2
Î

= σ2/N , in which σ2 =
〈

[I − 〈I〉]2
〉

.
The main procedure for incorporating turbulent scattering into sound propagation calculations is to gen-

erate random realizations of turbulence fields [12, 13]. The sound intensity is then calculated for each real-
ization, and the calculations averaged. This procedure exemplifies Monte Carlo sampling; the phase of each
Fourier mode can be viewed as the sample of a random variable with uniform distribution between 0 and 2π.
Since the random scattering produces a standard deviation of about 6 dB, the sound-level estimate has root-
mean-square (rms) error of (6 dB)/

√
N . But it has not been as widely appreciated that, when such random

realizations of the turbulence are generated, the additional computational cost of simultaneously sampling
other random variables, such as those associated with uncertainties in the ground properties and atmospheric
parameters, is negligible.

Ordinary MCS is illustrated in Fig. 1(a), for a case involving 16 samples of two independent random
variables, each distributed uniformly over the range [0, 1].

2.3 Stratified and Latin Hypercube Sampling
A drawback of MCS is that it tends to randomly undersample certain parts of the input parameter space,
while oversampling others. Stratified sampling is commonly employed to ensure that important regions of
the parameter space are adequately sampled. The parameter space is partitioned into strata, and then each
stratum is sampled independently. The overall statistics are determined by appropriately weighting statistics
as calculated from the individual strata. The strata should be mutually exclusive and exhaustive.

Let us considerK strata, designated Ωk (where Ωk ∈ Ω and k = 1, . . . ,K), with pk being the probability
of the parameters occurring within stratum k. Within each stratum,Nk random samples of Θ are drawn (e.g.,
using ordinary MCS), which we designate Θk,n (n = 1, . . . , Nk, where

∑
kNk = N is the total number of

samples). The estimate for the mean within stratum k is

Îk =
1

Nk

Nk∑
n=1

I(Θk,n). (10)
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The overall estimate for 〈I〉 is then determined from the estimated means of the strata as

Î =
K∑
k=1

pkÎk. (11)

In most applications of stratified sampling, proportionate sampling is used, meaning that Nk is set to
pkN . Figure 1(b) illustrates this approach. Here, the parameter space for two variables has been partitioned
into four strata (K = 4). As drawn in the figure, the strata have probability p1 = 1/4, p2 = 1/8, p3 = 1/4,
and p4 = 3/8. Hence, for a total of N = 16 samples, N1 = 4, N2 = 2, N3 = 4, and N4 = 6.

The variance for stratified sampling is derived in Ref. [6] as

σ2
Î

=
K∑
k=1

p2
kσ

2
Îk

+

[
K∑
k=1

pkbÎk

]2

, (12)

where

σ2
Îk

=

〈[
Îk − 〈Îk〉

]2
〉

=
1

N2
k

Nk∑
n=1

σ2(Θk,n) +
1

N2
k

[
Nk∑
n=1

b(Θk,n)

]2

(13)

and
bÎk = 〈Îk〉 − 〈Ik〉 (14)

are the variance and bias, respectively, for sampling of the kth stratum. The overall bias of the estimator is

bÎ =
K∑
k=1

pkbÎk =
K∑
k=1

pk〈Îk〉 − 〈I〉, (15)

in which 〈I〉 =
∑

k pk〈Ik〉.
When ordinary MCS is applied within each stratum, the samples are unbiased (b(Θk,n) = 0) and the

σ2(Θk,n) all take on the same value, namely σ2
k. Then σ2

Îk
= σ2

k/Nk and we have simply

σ2
Î

=
K∑
k=1

p2
kσ

2
k

Nk

+

[
K∑
k=1

pkbÎk

]2

, (16)

If the strata are sampled proportionately and the Îk are unbiased estimates of 〈Ik〉, we find that σ2
Î

=

(
∑

kNkσ
2
k)/N

2, where is the variance within the kth stratum. Should the σ2
k happen to all equal the same

value, σ2, this result reduces to ordinary MCS applied throughout the domain.
Latin hypercube sampling (LHS) is a general and relatively simple approach to stratified sampling which,

unlike most stratified sampling procedures, can be readily applied to situations involving many variables [14].
The range for each of the M variables is first partitioned into N equal-probability intervals. The resulting
grid has K = NM strata. A single sample is randomly drawn from each of the N intervals for each variable.
Note that only a subset of the strata are actually sampled; in fact, the probability of any given stratum being
sampled isN1−M , which becomes very small whenM is large. LHS is illustrated in Fig. 1(c). Like ordinary
MCS, the LHS estimate Î for 〈I〉 can be calculated from Eq. (5). The estimate is unbiased, since the strata
are sampled with equal likelihood. Unlike MCS, however, the samples are not drawn independently.

Let us consider an illustrative example of the benefits of stratified sampling. The example involves two
independent random variables. The ranges for each variable are partitioned into four equal-probability inter-
vals, resulting in a matrix with 4× 4 = 16 strata. Three cases are considered here which involve altering the
strength of the variations of the means of the strata, 〈Ik〉. These three cases are shown in Fig. 2. Specifically,
Fig. 2(a) is the “strong variation” case, in which the standard deviation of the stratum means is about 4.1.
Fig. 2(b) is the “moderate variation” case, with standard deviation of 1.2, and 2(c) is the “weak variation”
case, with standard deviation of 0.41. In all cases, the predictions within each stratum are assumed to be
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Figure 2: Example problem for stratified sampling of two independent random variables. The ranges for each
variable are partitioned into four equal-probability intervals, resulting in 16 strata. The color scale, which indicates
the mean for each stratum, ranges from −8 to 8. Three cases involving differing levels of variations of the mean
are shown: (a) “strong”, (b) “moderate”, and (c) “weak”. These cases are described in more detail in the text.

unbiased (that is, 〈Îk〉 = 〈Ik〉), and the variances of the strata, σ2
Îk

=, are all set to 1. Hence the strong
variation case is dominated by variations between size classes, whereas the weak variation case is dominated
by variations within size classes. We would expect stratified sampling to provide the best benefits in the for-
mer situation. Note that this example is highly idealized; in a more realistic example, the mean and standard
deviation would both vary continuously over the parameter space.

Figure 3 compares the rms error in estimating the overall mean, σÎ , from ordinary MCS (based on
Eqs. (7)–(9)) and from proportionate stratified sampling (based on Eqs. (12)–(14)). The horizontal axis is
the total number of samples, N , which for proportionate sampling equals the number of strata (K = 16)
times the number of samples per stratum Nk, the latter being varied from 1 to 1024 in powers of 2 (that is,
the total number of samples varies from 16 to 16 384). For ordinary MCS, the errors are much larger when
there is substantial variability between the classes. For proportionate stratified sampling, however, since each
stratum is sampled the same number of times, the variations of the means between the strata are always
perfectly sampled. Hence the rms error is the same for all cases considered; specifically, it always goes
as 1/

√
N . When variations within the strata are dominant (the weak variations case), MCS and stratified

sampling lead to essentially the same errors.

3. APPLICATION TO OUTDOOR SOUND PROPAGATION
3.1 Refraction Categories Based on MOST
As mentioned in the Introduction, refractive conditions for outdoor sound propagation are often partitioned
into strata. Such schemes have typically been based on Pasquill classes [2] or the Monin-Obukhov similarity
theory (MOST). In this section, we provide a brief overview of MOST and systematically derive appropriate
strata for sound refraction. Then, we use these strata for an illustrative calculation of variance reduction.

MOST is widely used to describe turbulence statistics in the atmospheric surface layer (ASL, roughly
the lowermost 50–200 m of the atmosphere), including the mean vertical profiles of wind, temperature, and
humidity. Ref. [6] considers in detail the systematic application of MOST to refraction of sound rays. For
simplicity, we assume that the rays are oriented within about 20◦ of horizontal, and thus refraction may be
modeled on the basis of vertical gradients of the effective sound speed, which is defined as ceff (z, ψ) =

c(z) + v⊥(z) cosψ, where c(z) is the actual sound speed, v⊥(z) the horizontal component of wind, ψ the
azimuthal angle between the wind and propagation directions, and z the height. A negative vertical gradient in
ceff causes upward refraction (away from the ground), whereas a positive gradient causes downward refraction
(toward the ground). MOST predicts the following equation for the gradient [6]:

∂ceff

∂z
=

1

kvz
[Ptc∗φh (ξ) + u∗ cos (ψ)φm (ξ)]− g (γ − 1)

2c0

. (17)
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Figure 3: Errors for predicting the overall mean for the three cases shown in Fig. 2, as a function of the total number
of samples, N . Shown are curves for ordinary Monte Carlo sampling (MCS) and for proportionate stratified
sampling. For the latter, all cases reduce to the same curve.

Here, u∗ is the friction velocity, c∗ = (c0/2T0)T∗ is a characteristic scale of the sound-speed fluctuations,
c0 and T0 are reference values of the sound speed and temperature, g is gravitational acceleration, kv ' 0.40

is von Kármán’s constant, Pt ' 0.95 is the turbulent Prandtl number in neutral stratification, γ is the ratio
of specific heats for air, T∗ = −QH/ (ρ0cPu∗) is the surface-layer temperature scale, QH is the sensible
heat flux from the surface to the overlying air, ρ0 is the air density, and cP is the specific heat at constant
pressure. Furthermore, φh(ξ) and φm(ξ) are universal functions of the non-dimensional height ξ = z/Lo,
where Lo = −u3

∗T0ρ0cP/ (gkvQH) is the Obukhov length. Many forms for φh(ξ) and φm(ξ) have been
proposed in the literature; the ones used for the calculations in this paper are given in Ref. [6].

The first term on the right-hand side of Eq. (17) is the contribution from temperature gradients. It can be
positive or negative, depending on the sign of c∗ (which is determined by stability in the atmosphere). The
second term is the contribution from wind gradients. This term can also be positive or negative, depending
on the sign of cosψ. The third term is due to adiabatic compression of the air column. The first and second
terms on the right, when integrated, have an approximately logarithmic behavior; they change rapidly near the
ground and become weaker as z increases. The adiabatic term, on the other hand, is independent of height.
Although it produces a relatively small gradient, it becomes dominant for large z.

A useful simplification of Eq. (17) involves generalizing the definition of the turbulent Prandtl number to
include dependence on the non-dimensional height ξ, specifically Pt,h(ξ) ≡ Ptφh(ξ)/φm(ξ). We further-
more approximate Pt,h(ξ) with Pt, which results in

∂ceff

∂z
' Ptc

∗
eff

kvz
φm (ξ)− g (γ − 1)

2c0

, (18)

where
c∗eff ≡ c∗ + (u∗/Pt) cosψ = (u∗/Pt)(A+ cosψ) (19)

and A = Ptc∗/u∗ is a dimensionless parameter indicating the importance of the sound-speed fluctuations
relative to the wind-velocity fluctuations.

The case |A| � 1 corresponds to nearly neutral atmospheric stratification. In such conditions, which are
typical of a windy day or night with cloud cover, wind gradients dominate. The case A � −1 corresponds
to unstable atmospheric stratification, as typically occurs on a sunny afternoon with light wind, for which the
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Table 1: Ranges for “refraction strength” categories based on the effective sound-speed scale, c∗eff .

Range Description
c∗eff < −0.5 m/s very strong upward refraction

−0.5 m/s < c∗eff < −0.3 m/s strong upward refraction
−0.3 m/s < c∗eff < −0.1 m/s moderate upward refraction
−0.1 m/s < c∗eff < 0.1 m/s weak refraction
0.1 m/s < c∗eff < 0.3 m/s moderate downward refraction
0.3 m/s < c∗eff < 0.5 m/s strong downward refraction

0.5 m/s < c∗eff very strong downward refraction

Table 2: Ranges for “profile shape” categories based on the inverse Obukhov length, L−1
o .

Range Description
−0.5 m−1 < L−1

o < −0.1 m−1 strongly convective
−0.1 m−1 < L−1

o < −0.02 m−1 moderately convective
−0.02 m−1 < L−1

o < −0.005 m−1 weakly convective
−0.005 m−1 < L−1

o < 0.005 m−1 neutral
0.005 m−1 < L−1

o < 0.02 m−1 weakly stable
0.02 m−1 < L−1

o < 0.1 m−1 moderately stable

effective sound speed gradient is dominated by the temperature gradient and always negative. Finally, when
A � 1, stratification is stable, as typically occurs on a clear night with calm wind. Near the ground, the
gradient is positive for all propagation directions.

From Eq. (18), refraction categories can be formulated on the basis of c∗eff and Lo, as these are the only
two parameters that vary with weather conditions and propagation direction. In reference [15], a scheme
based on seven categories for c∗eff , and six for L−1

o , was proposed. These categories are associated with the
strength of the gradient and the shape of the profile, respectively. The suggested ranges are shown in Tables 1
and 2. Of course, fewer or more categories could be employed, depending on the desired fidelity.

3.2 Acoustical Example
To illustrate how this analytical framework applies to sound propagation predictions, we consider here a
purely contrived dataset, but which is hopefully nonetheless informative. The data, shown in Fig. 4, are
intended to mimic A-weighted sound levels after the source signal has propagated over a distance of O(1 km),
so that meteorological effects are significant. The 7× 6 matrix in the figure corresponds to all combinations
of the refractive strength and profile shape cases from Tables 1 and 2. Each entry has three rows. The top
row is the probability (in percent) for that strength/shape category (stratum). The middle row is the sound
level prediction for the stratum, 〈Îk〉, followed by the true value, Îk, in parentheses. (Note that, in real-world
situations, we do not have access to the true value.) The bottom row is the standard deviation of the sound
level within that stratum, σÎk .

To make the dataset somewhat more realistic, we have included a tendency to underpredict sound levels in
upward-refracting conditions, as often happens due to underprediction of scattering by turbulence or diffrac-
tion. We also include a tendency for MOST to overpredict sound levels in stable atmospheric conditions; this
occurs because the temperature inversion is modeled as extending indefinitely above the surface, whereas in
the real atmosphere the inversion generally does not extend higher than tens of meters. Many other factors
could also bias the predictions; for example, if the ground impedance is assumed to be known exactly, but the
modeled impedance differs from the scenario for which the predictions are made, there will be a bias. The
mean bias error for the entire dataset is −0.76 dB. Regarding the standard deviations of the sound levels,
we use a large value for upward refracting conditions, due to the importance of random scattering in such
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Figure 4: Illustrative problem with refractive strength and shape categories (strata). The top row in each box is the
probability of that stratum occurring. Middle row is predicted sound level for the stratum, followed by the actual
value in parentheses. Bottom row is the standard deviation of the sound level within that stratum.

conditions. We also use a large value for strong downward refraction, due to the prevalence of ducted sound
propagation, which results in a modal interference pattern that is challenging to predict accurately [16]. Other
possible sources of variability include randomly varying wind direction and ground properties.

Calculations of the rms error for predicting the mean sound level, σÎ , based on Eqs. (12)–(14), are shown
in Fig. 5. Curves for equal and proportionate sampling are shown. By equal sampling, we mean that the same
number of samples are taken from each stratum, regardless of its probability. Calculations are shown for one
sample per stratum (a total of 42 samples), 2 samples per stratum (84 samples), and so forth in powers of 2
up to 256 samples per stratum. In proportionate sampling, as described in Sec. 2.3, the number of samples
is apportioned according to the probability of occurrence for the stratum. In either case, the general trend
is for the rms error to decrease as the total number of samples increases, as would be expected. The curves
plateau to a fixed value, which corresponds to the average bias error. Perhaps surprisingly, the rms error is
only slightly reduced through proportionate sampling.

4. CONCLUSION
The practice of partitioning meteorological and refractive conditions into classes (or strata, in statistical ter-
minology) has a long history in outdoor sound propagation. There are various motivations for adopting such
classes; typically they are used as part of a process for improving the computational efficiency of propaga-
tion predictions. However, the statistical benefits are rarely considered from a fundamental or quantitative
perspective. The discussion and examples in this paper were intended to illuminate some of the pertinent sta-
tistical sampling issues. In future work, we intend to apply these concepts to the analysis of a large synthetic
database of excess attenuation calculations, as generated by the parabolic equation method and spanning a
large range of ground, refractive, and turbulence conditions. Such an analysis will hopefully provide insight
on the best schemes for formulating the strata, and for quantifying the variance reductions.
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Figure 5: Dependence of the RMS error for estimating mean sound level on the number of sample predictions.
Two curves are shown, one when the number of samples in the strata are equal, and the other when the strata are
sampled in proportion to their probability of occurrence. The axis shows the total number of samples.
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