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Introduction 
The title of this paper is Path Analysis, and not Transfer Path 
Analysis, because the latter name has been assigned to the 
Forces method which, as it is used, is a contribution analysis 
method, more than a path method. 
The origins of the method lie in the need to solve two 
different problems. The first problem consists in quantifying 
the contribution of each part of a vibrating system to the 
total noise measured at a given location. This problem will 
be called problem A.  The second one, called problem B, 
consists in determining the noise produced by each one of 
the forces acting on a mechanical system.  

In the 60’s the method used to solve the problem A was 
called the “Strip” method. In this method the noisy object 
was totally covered with insulating blankets in order to attain 
a very reduced noise. Then the surfaces were uncovered one 
by one and the contributions of each surface deduced from 
measurements. The “Strip” method has been applied to 
motors, whole cars or even to whole train coachs, and it is 
still being applied today. 

A typical case of problem B was to estimate the 

contributions to interior noise of each one of the engine 
supports on a car. In order to solve this problem, the 
practical method was to unlink the engine from the car and 
then to attach the supports one by one. 

Multiple Coherence  
Between the years 1971-77 the next step was done by J.  
Bendat, L. L. Koss, R. J. Alfredson, C. J. Dodds and R. 
Potter [1-7].  

The problem “A” was posed in terms of finding the best 
approximation to the coefficients Hi of the next equation: 
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where p stands for the noise acoustic pressure and ai for the 
acceleration of each part of the system. In order to do this, 
they assumed that the “output” p and the “input” ai were 
known for a set of linearly independent conditions issued 
from measurements in running conditions. The obtained 
system of linear equations (1) is overdetermined and can be 
solved in a least square error sense to obtain the unknowns 
Hi .  

The important points of this method are: 

-It is operational because the results are obtained from real 
working conditions. In this paper we will call this method 
Operational TPA. 

-Its application needs a multichannel equipment because all 
the accelerations ai have to be measured simultaneously. 

-Multiple coherence function is used to know and separate 
the different sources of excitation. Recently, it has been 
shown that the solution of the least square problem (1) by 
the multiple coherence method is exactly the same as a well 
known method to solve a linear system of equations called 
LDLH matrix factorization [18]. 

-Coherent sources can not be solved using this method. 

-Although there is not an explicit mathematical definition of 
paths, the path concept is used. Therefore the connectivity 
problem is not presented. 

[3] and [8] are real applications of this Operational TPA. 

Transmission Paths Analysis (GTDT) 
In 1981 the author gave the next step [9] focusing on the 
paths. This means to recognize that the Hi from the 
Operational TPA can not be measured directly but they can 
be computed from measurable transfer functions and has a 
useful physical meaning. 

In [9] the Hi are called Direct Transfer Functions (DTF) TD
ij 

and the measurable ones are called Global Transfers 
Functions (GTF) TG

ij. Besides, it must be remembered that 
“signal” means linear or angular acceleration, displacement, 
velocity or pressure. 

The GTF TG
ij, between two subsystems i and j, is defined as 

the quotient between the signal at j, sj, and the signal at i, si, 

Figure 1:  Schematic presentation of problems A and B. 
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when only a nonzero force fi is being applied to i. These 
transfer functions are measurable but we can not superpose 
their effects to obtain the total noise because the signal has 
been transmited along all paths, or in other words, because 
the subsystem i is not the only one with a non null signal and 
in consequence it is not the only one giving its contribution 
to the signal at j. 

The DTF TD
ij is defined as the quotient between the signal at 

j, sj, and the signal at i, si, when a nonzero force fi is applied 
to i and the signals at all other points different from j are 
forced to be null.  

The signal at k produced by the force applied on k is called 
“external signal”. This external signal sk

e is then the direct 
result of the force fk, but it is also made up of the 
contributions of the other signals, si, with i  k, that have 
been indirectly excited by the force on k. 

An important remark is that transfer function signals do not 
have to be homogenous. Transfer functions can be 
acceleration / acceleration, acceleration / displacement, 
velocity / force, etc. This means that this method can be 
applied with or without measuring forces. 

Relation between DTF and GTF 
The basis of GTDT is the existing relation between direct 
and global transfer functions. The DTF set TD

ik can be 
obtained from the measured Global Transfer Functions [9] 
by: 

 

where [TG
ik]k is the GTF matrix without the row and the 

column k and TD
ik is the vector containing all the DTF 

between k and the other points.   

Physical meaning of the DTF 
The Direct Transfers quantify the paths linking the degrees 
of freedom (called points from now) of any linear problem. 

An easy example is given by the transverse displacement of 
a string of length L, fixed at both ends, and harmonically 
excited at the point x0. Its Green function is [21]: 

ωω ω
ω

ωω ω
ω

−=

−=

0
0 0

0
0 0

( )/( | ) sin sin ,      0 < x < x < L
sin( / )

/ ( )( | ) sin sin ,      0 < x  < x < L
sin( / )

L xc xG x x
L c c c

xc L xG x x
L c c c
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(3b)

where c is the characteristic wave velocity, which depends 
on the tension T and the density  of the string : c= (T/ )1/2. 

In order to apply TPA we choose 3 points x1, x2 and x3. The 
DTF between x1 and x3, TD

13, is expected to be null because 
when a force is acting on x1, if a zero displacement is 
imposed at x2, the displacement at x3 should be also zero. 
This can be computed from (2) using the GTF given by the 
Green Function as follows: 
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(4c) 
 

(4d)
 

(4e)

 

Applying (2) the obtained DTF TD
13 (4e) is then really null. 

A more detailed presentation is given in [19] where the same 
concepts are applied to the flexural vibrations of a beam. 

A final and more complex example is given by applying the 
method to the acoustic wave equation on a discretized 2D 
rectangular space. Fig.4 shows the computed TD at a given 
frequency for 3 points against all other points of the space. 

As shown in Fig.3, only the points on the contour of the 
tested one have a TD value different from zero. The value at 

=G D G
ij ik ikk
T T T   (2)

 

Figure 2:  Fixed-fixed string, set of 3 subsystems, points 
1,2 and 3 in displacenment 

 
Figure 3: Calculated DTF between a middle, a corner and a middle 
side point against all other points of the 2D space. The DTF is non 
null only for the adjacent points. 
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the other points is almost zero instead of zero as a 
consequence of the discretization. 

Finding a solution to problem A 
As shown in [9], the signal in each point can be computed as 
the sum of the contributions of all the other points through 
all possible paths on the structure.  

≠

= +
n

e D D
k k kk i ik

i k
s s T s T  (5) 

Equation (5) shows how to find the signal in one point of the 
system from the values in the rest of them when the DTF are 
known. 

 
Figure 4: The contributions of the each face vibration to the total 
noise in the microphone are given by (5). Even if the forces are 
not applied in all faces, each face is excited by all forces. 

From an experimental perspective this means that it is 
possible to find the contribution sjTD

jk of each one of the 
panels of a vehicle on the measured pressure sk at a point 
inside the vehicle. Another application of (5) is to quantify 
the contributions of each one of those parts to the vibration 
of one panel, spliting in each case the part directly produced 
by some external excitation. 

Another possibility is to split the signal going from a point to 
another in the part going through the direct link or through 
other points of the system.  

An example of this is to find the signal from a damper that 
arrives to a microphone but passing before through a 
window, or to split the signal from a window that arrives to a 
microphone in the part that has arrived to the window 
through the air and the part that has arrived to the window 
through the structure. Fig. 5 shows the contributions to the 
noise pressure in a train coach obtained by this method. 

Figure 5: Noise contributions of several subsytems to the interior 
noise in a railway coach. Each subsystem contribution is divided 
in contribution due to aerial and contribution due to structural 
excitation of the subsystem. 

Finding a solution to problem B 
-Also in this framework we can obtain the forces, or their 
equivalent that are fractions of the signals from these 
external forces called here external signals.  

≠

=
n

e G
k i ik

i k
s s T  (6)

For the special case of acceleration and force signals, (6) can 
be written with ak and Fi instead of sk and si

e: 

 
Figure 6: Equation (6) give the contributions of each one of the 
forces, but each force contribution is transmitted through all the 
faces. There is not information about the path of the contributions. 

Equation (6) corresponds to the TPA method [9]. It allows 
obtaining the signal as a result of the superposition of the 
external signals (or forces). It is important to insist on the 
fact that (6) does not take into account each one of the 
signals contributions but the external signals contributions, 
which are the forces or a direct consequence of them. 
Additionally, only the Global Transfer Functions appear on 
(6) and not the DTF. 

Equation (6) has been the more used result of [9] because of 
the report [12] done by the Swiss society Keller, working on 
the automotive industry. This report was based on [9] and it 
was the starting of the TPA method.  

In effect [13], [14], [15], from Keller, Ford, Porsche and 
Fiat, present some initial works aimed at developing the 
method in order to identify the forces. 

Later in the 90’s, LMS was working in a European project in 
with Keller and Fiat [16]. This partnership is at the origin of 
the commercial products of the TPA method, equation (5), 
and developments on the PCA method. 

Industrial applications 
The author has been applying the methods of equations (4) 
and (5) for the last 28 years and without using force 
measurements. 

A part of this work has been done in the railway sector in the 
frame of a technology transfer to the world’s bigger train 
builder company, which has been using this technology for 
the last 8 years. Another important fact is that the GTDT 
methodology has been adapted to other fields like industrial 
machinery, windmills, buildings or civil engineering. For 
this purpose it has been necessary to develop a theoretical 
and experimental framework. Specially: 

-Definition of finite subsystems. 

-Definition of methods to choose these subsystems. 

-Application of this method to the vibroacoustic energy 
under the Statistical Energy Analysis hypotheses [17] and 
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outside of them. In the initial works the method was applied 
only taking into account the coherent form (low frequency) 
and  latter it has been developed the energetic part (mid and 
high frequency). 

-Integration of supplementary tools in the frame of the EOF 
(Empirical Orthogonal Functions) 

Figure 7: Some GTDT real Industrial applications.  

 

Relation with the numerical methods 
In [20] the possibilities of (2) have been explored to deal 
with numerical calculus exploding de conectivuty role of the 
DTF..  

The first example of [20] consists in solving the 
inhomogeneous Helmholtz equation in a 2D square domain. 
After discretization it is shown that the DTFs among the 
mesh nodes are very similar to those arising from the stencils 
of several numerical methods (some finite difference and 
finite element methods are considered). As we can found the 
DTF from the GTF it is possible to obtain the coefficients in 
numerical form.  

The second example of [20] involves a free field radiation 
example from a source to a receiver. The source has been 
encircled with a set of points at a certain distance, showing 
that no signal can be transmitted from the source to the 
receiver if the signal at these points is blocked. The DTF 
from the source to the receiver numerically expresses this 
fact and consequently has an almost zero value. The DTFs 
from the circle elements to the receiver are also calculated 
and compared to their analytical counterparts given by [21]. 
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