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Introduction
Impacts between bodies of any sort often constitute
an important source of noise and vibration. These
impacts can be characterised as very short contacts
between bodies leading to a sudden release of energy as
audible noise and to vibrations of the involved structures.
Resulting sound pressure levels often pose a serious
health risk and structural vibrations lead to further noise
emission, material fatigue and breakdown.

Due to a variety of source mechanisms and multiple
possible ways of transmission, propagation and radiation,
classical methods of noise and vibration control are often
difficult to implement. In this study it is theoretically
investigated how noise and vibration generated by a
sphere-plate impact can be affected by application of an
active force acting on the plate at the impact location.

Two different numerical models are derived as a basis
for simulations. A parameter study is conducted to
investigate the possibilities of active structural control
of impacts. With the obtained data, an active control
configuration is developed which is applicable to a wide
variety of plate-sphere impact situations and which leads
to promising noise and vibration reduction.

Theory
The process of a sphere impacting a simply supported
plate, as depicted in Figure 1, can be divided into two
individual sub-processes with their own particular sets of
equations of motion (EOM). The first set describes the
free fall of the sphere before and after an impact and
the free vibration of the plate after the impact while the
second set of EOMs models the impact process between
the two bodies.

A local displacement variable ξ is defined, expressing the
distance between the lowest point of the sphere ξs and
the plate surface ξp (see Figure 1)

ξ(t) = ξs(t)− ξp(t) [m] (1)

For sphere-plate contact it is ξ(t) ≤ 0, in this case ξ
expresses the penetration depth of the sphere into the
plate as shown by Figure 2. Based on ξ(t) also a relative
velocity v(t) and acceleration a(t) can be defined.

Combination of the equations of motion for plate and
sphere for the contact case yields

Figure 1: Side view of problem setup. Offset of forces only
for visualisation. Fg denotes the gravitational force, Fc the
contact force.

Figure 2: Deformation of plate and sphere during contact.
Black: actual shape of plate and sphere during contact. Grey:
Shape without deformation.

−msg −msa(t) + Fc(t) =−ms Fc(t) ∗ gc,a(t)
+ ms Fa(t) ∗ gc,a(t) (2)

with ∗ denoting convolution, ms being the mass of the
sphere, g being the gravitational constant and gc,a the
Green’s function of the plate. Furthermore Fa is the
active force which is applied to the plate and Fc the
contact force, which is modelled according to the Hertz
theory of elastic contact (see [1, 2]) as

Fc(t) = s (−ξ(t))
3
2 H{−ξ(t)} [N] (3)

Herein s is the Hertz contact stiffness.

In order to account for the energy loss during the impact,
some form of damping has to be introduced into (1). Due
to the variety of possible damping mechanisms which
can occur (e.g. relaxation processes in the structures,
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friction, compression of air, etc.) it is not possible
to adequately cover all energy dissipation mechanisms
with one single damping theory. Two different damping
expressions which have been applied to impacts in the
literature ([2, 3] and [4]) are evaluated, with the first
being relaxation damping, giving

Fc,τ (t) =
[
srel (−ξ(t))− sτ

τ

(
(−ξ(t)) ∗ e−

t
τ

)]

·
√
−ξ(t) · H{−ξ(t)} . (4)

srel and sτ are the relaxation stiffnesses for a Hertzian
contact and τ is the relaxation time. Albeit relaxation
gives a physically sound description of dissipation in
structures, the complexity of (4) might not be well suited
for numerical simulations. Due to this also a viscous
damping model is investigated

Fν(t) = c(t) (−v(t))H{−ξ(t)} . [N] (5)

Herein, c(t) is the viscous damping factor.

Simulations
A numerical impact simulation can be performed by
introducing (4) respectively (5) into (2), subsequent
discretisation and application of the Newton-Raphson
(see [5]) and Hilber-Hughes-Taylor methods (see [6]).

Considered is the impact of a steel sphere of radius R =
0.02 m onto a simply supported quadratic aluminium
plate of 0.5 m × 0.5 m with the impact position being
exactly in the middle of the plate.

Simulations are performed by adjusting the damping
parameters of equations (4) and (5) to give an initial
rebound height which is in accordance with a coefficient
of restitution cor = 0.7 as found in the literature (see
[1, 4]).

Comparison of Damping Models
Before investigating the influence of the active force on
the impact process, the implemented numerical simu-
lation of the sphere falling onto the plate as such is
investigated. This is done to ensure a correct simulation
of the physical process and to assess the applicability of
the two employed damping methods.

The rebound sequence is shown in Figure 3. It can
be seen that for impacts following the first one the
rebound heights for both methods do not reach the
values expected from the cor. While deviations can be
considered acceptable for viscous damping, this is not
the case for relaxation damping which actually shows one
rebound less than the viscous case.

Further observations regarding the behaviour of both
methods can be found in Table 1. It can be seen that even
though the viscous model is physically more abstract,
it actually gives better results than relaxation damping.
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Figure 3: Comparison of relaxation and viscous damping
simulations. Initial height 0.05 cm at t = 0 s. (−−)
relaxation, (—) viscous damping, (· · · ) expected rebound
heights according to cor.

Relaxation Viscous
Physical adequacy good limited
Successive rebound
simulation not satisfying ok
Damping parameters srel, sτ , τ c
Numerical solving

Discretised equations complex simple

Average iterations ≈ 2800 2

Convergence < 100 % 100 %

Table 1: Comparison of simulation performance for
relaxation and viscous damping.

It is believed that this can partly be attributed to the
complexity of the relaxation formulation (4), which seems
to cause numerical problems. Problematic is also the
adjustment of Srel, Sτ and τ for which it is difficult to
find reference data. In this regard the viscous model
— with just one parameter (c) to adjust — seems less
error prone. Taking all this into consideration, it is
believed that viscous damping is the more suitable tool
for the requirements of this study and will be used for all
following calculations.

Parameter Study
The acoustically relevant quantities of an impact are:

1. Acceleration noise (EAcc, pmax),

2. plate vibrations (Evib, vp,max),

3. ringing noise (Erad in audible range)

4. and rebound height (ξreb).

The rebound height is included as it determines the
impact velocity for a successive impact during a free fall
situation. Different active control schemes are possible,
depending on whether it is aimed for reduction of an
individual quantities, a group of quantities or all of them.

Due to the complexity of the governing equations and
the variety of the relevant quantities it is difficult to
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Quan- max. Configu- Side effect
tity Reduct. ration
EAcc −11 dB Fcos,1 Evib = +2dB

ta = 11, κ = −1.5 vp,max = +3 dB
pmax −2 dB Fcos,1 Evib = +2dB

ta = 11, κ = −1.5 vp,max = +3 dB
E′vib −3 dB Fc,1 -

ta = 11, κ = 0.8

v′p,max −3 dB Fcos,2 -
ta = 1, κ = −0.4

E′rad −5 dB Fc,2 -
ta = 11, κ = 1.0

ξ′reb 8 % Fsin,1 vp,max = 4 dB
ta = 1, κ = −1.0 Evib = 1dB

v′next 8 % Fsin,1 vp,max = 4 dB
ta = 1, κ = −1.0 Evib = 1dB

Table 2: Maximum reduction of noise and vibration
quantities obtained during the parameter study. ta is the
time step of the impact at which Fa starts to act, κ the scaling
factor compared to Fc,0.

directly derive optimal force configurations from the
mathematical description of the impact. Hence, a
parameter study is conducted to assess the general
influence of active control forces of different shape and
strength. In the following section it is then investigated
how the results of the parameter study can be applied to a
wide variety of real impacts with different configurations.

Regarding amplitude and/or shape, all investigated ac-
tive forces are based on the contact force without active
control Fc,0. The following configurations for Fa are
examined:

1. Differently scaled constant values,

2. scaled and/or time shifted versions of Fc,0 ,

3. scaled and/or time shifted sines based on Fc,0 ,

4. scaled and/or time shifted cosines based on Fc,0 .

Information about the maximum reduction which is
obtained during the parameter study can be found in
Table 2. Without going into details it can be seen that
the individual quantities can be reduced by a consider-
able amount. As expected, maximum reduction is not
achieved with the same active force configuration for all
quantities, instead there are five different configurations
for the seven quantities. Moreover, in four cases a
side effect can be found, i.e. maximum reduction of one
quantity leads to an impairment of another one. On
the other hand, three configurations do not show any
impairment at all, making them promising candidates
for further investigation.

In Figure 4 one of the three active force configurations
is shown exemplarily. Generally, some common features
can be deduced from the the three configurations leading
to optimisation without side effects:

1. Amplitude is lower than max(Fc,0),

2. directed upwards,
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Figure 4: Example of an optimum active force configuration
(Fc,1) for single parameter reduction for first impact on
aluminium plate. (· · · ) contact force for case without active
control, (−−) applied active force, (—) resulting contact force
for applied active force.

3. start slightly before max. deformation is reached,

4. fade in and fade out smoothly

5. and application for a slightly longer period of time
than an uncontrolled impact.

Physically this can be interpreted as follows: The aim is
to maximise the amount of energy transferred to the local
deformation of plate and sphere without actively pushing
the sphere upwards or exciting the plate with the active
force.

Development of an Active Control
Method
The results of the parameter study are based on artificial
conditions which are unlikely to be met for real impacts.
Especially problematic is the dependance on parameters
based on Fc,0. Hence, while the proceedings of the
parameter study are useful for a general evaluation of
possible force configurations and lead to valuable results,
a practical implementation has to be realised differently,
using universal parameters which are independent of any
a priori knowledge about the impact conditions.

The parameters should be sufficiently precise, applicable
to a broad range of impact conditions and not too
complex to implement. The last condition is based on
the circumstance that the usually very short contact
times do not allow for complicated calculations with long
execution times.

In this context, it is helpful that the findings of the
parameter study reveal that promising results are mostly
obtained when there is a time delay between the begin-
ning of the contact and the start of the active force. This
allows the replacement of the time delay ta with a control
variable based on the slope of ξ(t) respectively Fc(t).
For the deformation the following can applied: From
the beginning of the contact the penetration depths are
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Figure 5: Forces for the first impact on the aluminium plate
with an optimised active force configuration. Drop height
0.05 m. (−−) impact without active control, (—) impact with
active force, (− · −) applied active force (κ = 0.8, vthr =
−0.25 m/s).

detected and stored at specific time samples, i.e. ξ(tN ).
This allows estimation of the slope as

v(t) ≈ ξ(tN )− ξ(tN−1)
Δt

. [m/s] (6)

For the impacting part of the contact where no active
force acts, a specific slope can unambiguously be con-
nected to a time delay which is related to the length of
the contact without active control. Hence, the time delay
is no longer specified in absolute values (i.e. time steps or
seconds) but as a slope, or equivalently impact velocity,
threshold vthr.

The active force starts to act as soon as the slope (which
is negative during the first part of the impact) gets higher
than vthr. Based on the findings of the previous section,
the active force is then applied as a shifted and scaled
version of the contact force which is calculated from the
real penetration depth:

Fa = κ · {−ξ(t− ta)} 3
2 s . [N] (7)

where ta is now specified by the time delay between
the start of the contact and the moment where vthr is
reached. Apart from the simplicity of implementation
and the universal applicability, this approach has another
advantageous feature. By defining Fa based on values of
ξ given by the actual contact, any influence of the active
force at time t also propagates to a later time t+ta where
Fa is based on ξ(t).

For reasonable force configurations this automatically
leads to an extension of Fa with a decreased slope, see
Figure 5. The previous section has shown that this is a
most expedient behaviour. Compared to Table 2 further
reductions in the range of −1 dB to more than −30 dB

can be achieved. The general results are comparable for a
broad range of different impact conditions (materials, ini-
tial impact height, etc.), meaning the proposed approach
is not limited to the conditions of the parameter study
but applicable to a variety of different impact conditions.

Concluding Remarks
The most important remarks related to the numerical
simulations are the shortcomings associated with the
implemented relaxation model. The problems related to
the Newton-Raphson root finding — erratic convergence
behaviour and partly low execution speed — prevent
examination of some configurations. This problem is, at
least partly, believed to be related to the to the enhanced
complexity of the numerical equations. Adding the com-
plexity and uncertainty introduced by the replacement
of the Hertz’ stiffness s with the relaxation parameter
srel, sτ and τ , it is obvious why the implementation of
a different damping model is deemed necessary in this
study.

Within the limits of the desired application the viscous
damping model proves to be a tool fulfilling all require-
ments. It is numerically very efficient, comparably easy
to implement and gives satisfying results.

Regarding the actual task of developing an active control
scheme for impact related noise and vibrations results
have been obtained which show that all relevant noise
and vibration quantities can individually be optimised by
proper force configurations. Furthermore, certain force
configurations lead to optimisation of all quantities.

Finally, an implementation of an active control scheme
without a priori knowledge about the impact conditions
is theoretically feasible. It is believed that the presented
active control method can be successfully applied in
practice. The biggest problem for real application is
seen in the circumstance that impact detection and
application of Fa are restrained to the actual impact
location. This puts high demands on the actual setup and
limits the choice of equipment for sensor and actuator.
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