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Introduction 
The acoustic far field from open turbulent flames can be 
determined by using the hybrid approaches of aeroacoustics. 
These methods calculate the near field with a Computational 
Fluid Dynamics (CFD) code and transfer the data to an 
acoustic solver [1]. In the present approach, the Boundary 
Element Method (BEM) is the acoustic solver used to 
determine the radiated sound. If the input velocity has a high 
hydrodynamic component, the sound field calculated by the 
BEM will be overestimated, since local non-propagating 
velocity fluctuations will be assumed to propagate with 
sound speed. 

To eliminate the hydrodynamic component, techniques 
employing a Helmholtz-Hodge vector decomposition are 
used and applied in the time domain (e.g. in [2]). In this 
article, we propose a method which combines the Dual 
Reciprocity BEM in the frequency domain with a vector 
decomposition in order to eliminate the hydrodynamic part 
of the particle velocity. 

Basic Idea 
The sound radiation of an open turbulent flame can be 
determined using the standard BEM if the normal particle 
velocity un is known at a closed surface S that encloses the 
flame (see Fig. 1). This approach is valid if the medium 
outside S is quiescent.  

Figure 1: Illustration of the hybrid approach for the 
calculation of the radiation from flames. 

The expression for the sound pressure radiated from the 
flame is given by the surface integral 
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The values of the velocity can be provided by a compressible 
CFD calculation. CFD codes normally provide the data in 
time domain, but they can be converted to the frequency 
domain through a Fourier transform. A description of the 
processing of the data was given in [1]. 

The total velocity field obtained from the CFD is supposed 
to have not only an acoustic component, but also a 
hydrodynamic component that does not propagate with 
sound speed and decays with increasing distance to the 
burner nozzle. The amplitude of the non acoustic component 
is often bigger than the acoustic one. But if a sufficiently 
large control surface S is considered, it is expected that only 
the acoustic component is present and a BEM calculation 
can be started.  

In many practical cases, the region where the hydrodynamic 
part is important is large and it may not be possible to extend 
the computational domain to cover it completely. For those 
cases, an alternative is to take a smaller control surface and 
separate the acoustic component from the hydrodynamic 
one. The control surface should be still large enough to 
enclose the real acoustic sources. 

The total velocity field v can be written as a sum of three 

vector fields [3]: 

hAv                           (2) 

where  is a scalar potential, A  a vector potential and h  a 

"harmonic" vector with and0h 0h . The 

first vector describes an irrotational field since 

0 and the second one a solenoidal field since 

0A .

For low Mach numbers, where the fluid can be assumed as 
incompressible so that all compressible effects can be 
considered to have an acoustic nature, the acoustic velocity 
is entirely given by the first vector field: 

)(inu   .                              (3) 

Then, if we take the divergence of Eq. (2), we obtain a 

differential equation for the scalar potential .

v2
  .                          (4) 

Eq. (4) is a Poisson equation where the source term can be 
determined since the velocity is given. Once the scalar 
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potential is solved, the acoustic particle velocity can be 
derived from Eq. (3) and used as input for the BEM 
program. 

For open turbulent flames, which are the focus of this work, 
it will be assumed that the error of neglecting the mean flow 
is small, since the Mach numbers are very low, especially at 
some distance from the burner nozzle. Under this 
assumption, the acoustic pressure inside S can still be 

defined in terms of the scalar potential 

jp in)(
                                 (5) 

To find a unique solution of Eq. (4), appropriate boundary 
conditions must be imposed. Since outside S the sound 
waves are assumed to propagate linearly, the sound pressure 
fulfils the homogeneous Helmholtz equation. In this region, 
pressure and particle velocity can be also defined in terms of 

a velocity potential ,

jp  , 'u                        (6) 

where  satisfies: 

0'' 22 k                               (7) 

Hence, requiring continuity of sound pressure and particle 
velocity at S and considering Eqs. (3), (5) and (6), the 
boundary conditions are given by: 
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Sound radiation in the far field 
To evaluate (1),  has to be previously determined at S.

Applying the divergence theorem to Eq. (4) an integral 

equation for  is obtained: 
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Using the Dual Reciprocity BEM (DRBEM), the volume 
integral in Eq. (9) can be expressed as a sum of surface 

integrals. In this method, the source b  should be known in 

the volume enclosed by S so that an expansion of  in a set 

of functions  can be performed 
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and a set of functions j satisfying the Poisson equation 

with  as a the source term must be found  jf

jj f2
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Eq. (9) can be written as (see [4]): 
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A second integral equation is obtained using the divergence 
theorem again for Eq. (7): 
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where C'=1-C.

To solve Eqs. (13) and (14), both equations need to be 
discretized. If we generate a mesh of S with N elements and 
consider constant elements, i.e. the quantities are assumed to 
be constant over each element, the variables are solved at the 
center of each element.  

The matrix forms of Eqs. (13) and (14) are then: 
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The matrices 
PH , , 

PG HH and are the usual N×N

BEM system matrices. 

HG
PH  and 

HH  have elements 

containing nG / and ng /
PG

 respectively multiplied by 

a mesh element surface.  and  have elements 

containing the functions G and g respectively multiplied by a 
mesh element surface. 

HG

The coefficients are determined directly from the known 

source term by discretizing Eq. (11). 

bF 1
                                 (17) 

The matrix is a M×M square matrix, where M=N+L and L
is the number of interior points considered in the 
discretization. The number of interior points should be at 
most of the order of N [5]. 

F

Eq. (16) provides a relation between and n/ .

Taking into account the boundary conditions (8) a relation 

between and n/ at the surface is also obtained which 

can be inserted in Eq. (15). Hence, a matrix equation for 

can be derived and solved: 
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Numerical test 
The procedure to separate the acoustic and hydrodynamic 
parts of the velocity was tested with a numerical example. 
Both velocity fields were conceived, the hydrodynamic part 
is divergence free as is required in this approach. 

Acoustic Component 
The acoustic component is given by a velocity field of a 
spherical source uniformly distributed within a radius R.
Such configuration can be thought of a burning gas with a 
harmonic uniform heat release ratio (spherical flame). This 
case was investigated previously in [6]. 

The velocity field describing this source at all positions is 
given by 
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Considering continuity of pressure and normal velocity at 
the boundary, the coefficients C and A are given by: 
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where is a constant describing the heat release ratio and 

 and  are the spherical Bessel and Hankel functions 

respectively.
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Hydrodynamic Component 
The non acoustic component of the total velocity is assumed 
to have the following expression: 
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Figure 2: Hydrodynamic component of the velocity and 
control surfaces. 

This velocity is symmetric to the X-axis and each 
component decays exponentially in axial and radial 

directions. The constants  and  determine how strong its 
magnitude decays. The parameter D allows adjusting the 
magnitude of the hydrodynamic velocity respect to the 
acoustic velocity. 

In Fig. 2, the velocity vectors of (21) are shown as well as 
several control surfaces that were used to calculate the sound 
radiation. Two types of surfaces were used, cylinders (Z1, Z2

and Z3) and spheres (S0, S1, S2, S3). The surface S0

corresponds to the spherical flame surface with radius R.
Inside S0, the source exists, outside S0 there are no acoustic 
sources. The form of the control surface has no influence on 
the sound field if the control surface encloses all acoustic 
sources. 

Results
For the numerical calculations, the radius R was chosen to be 
0.15 m. A model with 640 elements was used for the 
spherical control surfaces and a model with 768 elements for 
the cylinder. Both models have at least 6 elements per 
wavelength for frequencies up to 2000 Hz. 

A first calculation of the sound radiation was made without 
applying the splitting technique. The sound power was 
determined using the total velocity at the control surface. 
The curves obtained with surfaces S0, S2, S3, Z2 and Z3 are 
compared with the analytical sound power of the acoustic 
source and shown in Fig. 3. 

Figure 3: Sound power curves obtained with the BEM 
calculation using the total velocity field. 

The sound power is clearly overestimated when the control 
surfaces lie in a region where the hydrodynamic part is 
important. For the larger surfaces S3 and Z3 the error is 

smaller because hv has decayed. 

The splitting technique was then tested. Eq. (18) was solved 

to find the scalar potential  and its normal derivative 

n/ . The source term was given by 

uvub h .
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The expansion functions  in Eq. (11) are the radial 

functions suggested in [7]: 
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where  denotes the position of the j-th collocation point. 

Convergence properties of these functions are presented in 

the same work. The associated functions j of Eq. (12) and 
their derivatives are: 
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The curves obtained with surfaces S0, S2, S3, Z2 and Z3 are 
shown in Fig. 4, again compared with the exact solution. 

Figure 4: Sound power curves obtained with the BEM 
calculation applying the splitting technique. 

Since all control surfaces enclose all acoustic sources, the 
sound power is expected to be the same. The agreement of 
the BEM curves obtained with the acoustic component alone 
is very good except near the first minimum of the sound 
power, where the error is expected to be bigger. 

When the control surfaces S1 and Z1 are used, the results 
after using the splitting technique do not agree well with the 
exact solution, but that is expected since there are acoustic 
sources outside the control surfaces. 

Conclusions
A method to separate the hydrodynamic and acoustic 
components of the velocity field provided from a 
compressible CFD calculation was presented. The method 
works in the frequency domain and is based on the DRBEM.  
This procedure is necessary if the velocity is used to 
compute the sound radiation of turbulent flames with a 

standard BEM calculation to avoid considering non 
propagating fluctuations. 

The method was tested with a numerical example and has 
shown promising results. In a future work, the method will 
be applied to unsteady data of a LES calculation simulating a 
turbulent flame. Also, the inclusion of a mean flow will be 
considered. 
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