
 

Feature Extraction for Speech Recognition 

C. Lüke, K. Schnell 

Institute of Applied Physics, Goethe-University Frankfurt,  

Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany 

E-mail: lueke@informatik.uni-frankfurt.de, schnell@iap.uni-frankfurt.de 

Introduction 

One main problem of automatic speech recognition is the 

variability of the recorded speech signals, which is caused by 

the variations of the speech utterances themselves and by 

different environments and audio equipments. The latter is 

especially important for ASR-applications in natural and 

varying environments. Basically, three strategies can be 

treated to tackle this robustness problem. At first, the audio 

recordings themselves can be designed to capture the speech 

only, which can be achieved for example by microphone 

array techniques such as beamforming. However, this 

approach needs special hardware equipment. Secondly, the 

features for the pattern-recognition algorithms should be 

defined to be robust against as many kinds of distortions as 

possible. Finally, the speech recordings and/or their models 

can cover distortions from different noisy environments. The 

main focus of this contribution is the feature extraction. The 

basic features which are used here are the well-known mel-

frequency cepstral coefficients (MFCCs). To improve the 

robustness of the feature vectors, normalization methods can 

be applied to the sequence of the feature vectors such as 

cepstral mean normalization (CMN) [1]. The attractive point 

of feature normalization techniques is that they are both 

simple and effective [2]. Especially, the simplicity makes the 

feature normalization techniques interesting for low-resource 

and small-scale applications. The normalization can balance 

noises and different recording influences. One assumption of 

the CMN is that the mean represents the environmental 

stationary acoustic components. However, for short 

utterances, the mean contains spectral characteristics of 

speech sounds, too. To tackle this problem, the use of a 

weighted mean is proposed in this contribution. The main 

idea of this approach is to weight the nonstationary and the 

stationary parts differently for the calculation of the mean. 

Furthermore, an optimized limiter function is introduced 

which is applied to the norm of the feature vectors. For 

evaluation, a small-scale recognition tool with a small 

dictionary of less than 100 words is used. For speech 

recognition, HMM is the state-of-the-art method for the 

pattern recognition problem. However, for low-resource 

embedded mobile applications with a very small vocabulary, 

the DTW approach can be sufficient, too; e.g. DTW was 

successful in number dialing for cell phones. Here, a DTW-

based approach is used with optimized weights for the 

diagonal steps versus horizontal/vertical steps. In 

comparison to [3], different weights are used for each feature 

vector component. 

 

Feature Extraction 

The feature extraction describes the whole conversion from 

the speech signal to the sequence of feature vectors for the 

pattern recognition. At first, each recorded utterance is pre-

processed by an automatic gain normalization using the 

maximum amplitude. Then, the speech signal is segmented 

in overlapping frames of 46ms length and 29 ms overlap, 

which are weighted by a Hamming window.  

In the feature extraction, mel-frequency cepstral coefficients 

(MFCCs) are used. Firstly, the MFCCs are calculated 

conventionally by the DCT of mel frequency bands of the 

FFT. Then, the norm of the MFCC vector x
�
 is adjusted by a 

nonlinear function of a limiter since the distance of two 

feature vectors also depends on their norm. The limiter 

function is given by eq. (1) and includes the parameters wg 

and wL  
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The limiter function limits the norm of each MFCC vector x
�
 

that is greater than wL, otherwise, the vector is rescaled using 

the parameter wg. 

The next processing step is a voice activity detection method 

(VAD) by simply using a threshold. Each speech part is 

extended by two extra frames before and after the VAD. 

This simple algorithm turned out to be sufficient for the 

evaluation of the feature extraction methods. 

The complete 42-dimensional feature vectors ty
�
 consist of: 

- the logarithmic frame energy 

- the delta logarithmic frame energy 

- 20 MFCCs 

- 20 Delta-MFCCs 

Normalization methods 

Now, two conventional and one specifically modified 

normalization method are treated. The normalization 

methods are applied to the whole feature vector. The cepstral 

mean normalization (CMN) calculates the means µi of the 

vector components yt,i for each utterance and subtracts them 

from the vector components as described by eq. (2), where i 

is the index of the vector component,  t is the frame index 

representing the time, and T is the length of the utterance 
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As an extension of the CMN, the cepstral variance 

normalization (CVN) additionally normalizes the variance 

by dividing each vector component by its standard variation 

as described by eq. (3) 
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These methods of normalization are designed for relatively 

long utterances in order to balance stationary noises and 

recording conditions. In the case of short utterances, the 

mean also contains spectral characteristics of individual 

speech sounds. 

By emphasizing nonstationary regions of the utterance, we 

tried to tackle this problem. The norm ∆yt of the Delta-

MFCC vector gives a measure of the nonstationarity of the 

corresponding speech frame. The nonstationarity is caused 

by articulatory movements of the vocal tract and by changes 

of the excitation. 

In the following, we introduce the weighted cepstral mean 

normalization method (WCMN). For that purpose, the 

weights λt are defined describing the nonstationarity 

normalized with respect to the utterance 
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The values of the weights λt are between 1 and 1 + w
norm

. 

The weights λt are used to calculate the weighted mean 

values iµɶ  as well as to scale the feature vectors. Finally, the 

weighted mean values are subtracted from the corresponding 

feature vector components  
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In comparison to the CVN method, the weighting factor λt is 

used for scaling. By emphasizing nonstationary frames more 

than stationary ones, the recognition rate can be improved in 

comparison to the CNM method. 

 

DTW 

For the evaluation of the feature extraction methods, the 

dynamic time warping algorithm (DTW) is used to compare 

a given utterance to reference utterances. Basically, the 

DTW algorithm calculates a two-dimensional distance map 

for pairs of utterances and determines the shortest path 

through the map [4].  

If two samples are uttered similarly, the optimal path is not 

exactly the diagonal, but it is usually a slight variation of the 

diagonal. When trying to match utterances of different 

words, the shortest path calculated by the DTW algorithm is 

usually not diagonal. So it is reasonable to define constraints 

on the path in order to prefer more realistic paths. For that 

purpose, diagonal paths can be favored by applying a small 

weight wd for diagonal steps, which penalizes concurrently 

horizontal and vertical steps. This can be seen from eq. (6) 

showing the calculation of the smallest path error to the 

point ( , )t s . ,t sd  is the distance between the feature vectors 

tyα
�

 and syβ�  of two utterances α  and β  and ,t sD  is the 

error of the best path to the point ( , )t s  in the map 
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The distance map of the DTW is usually calculated by taking 

the standard Euclidean norm of the difference of two feature 

vectors. We can improve the recognition rate by applying a 

weight wi
dist

 for each feature vector component  
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These 42 weights wi
dist

 are equal for all utterances and can be 

optimized by minimizing the word error rate (WER). 

In summary, depending on which method is used, there are 

up to 47 parameters which have to be optimized. 

Considering 47 parameters for the reference corpus of 439 

utterances, the recognition rate can be improved. 

Evaluation 

The corpus consists of 439 utterances, representing a 

vocabulary of 58 words. These utterances are recorded in 

three different environments with different microphones as 

well as different kinds and grades of noise. Some of the 

utterances are whispered. These whispered utterances can be 

recognized only by using one of the normalization methods. 

In table 1, the achieved recognition rates are shown. It can 

be seen that the recognition rate can be improved by the 

WCMN method compared to the standard CMN technique. 

However, the CVN method still achieves better word error 

rates; therefore, further investigations are needed to check if 

a combination of the weighted normalization and the 

variance normalization can outperform the standard CVN.  
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Table 1: WER after the optimization. 

WER fixed dist

iw  optimized dist

iw  

no normalization 9,11 % 8,66 % 

CMN 8,20 % 6,38 % 

WCMN 7,97 % 5,92 % 

CVN 7,25 % 5,69 % 

 

From table 1, it can be seen that the optimization of dist

iw  for 

each vector component leads to an improvement of the 

recognition rate. Without using the limiter, the recognition 

rate is significantly deteriorated. The recognition rate gets 

also worse if utterances of other speakers are added to the 

reference corpus. It is known that the DTW algorithm does 

not fit very well to speaker-independent ASR in comparison 

to the Hidden Markov Model (HMM). The figures 1-4 show 

an example of the utterance of the German word “Auenland” 

in spectral, cepstral, and feature-based representations over 

time. Positive values appear as red, negative values as blue. 

While in fig. 2 the central region of the utterance appears to 

be spectrally flat, the limiter reveals its structure, which can 

be seen in fig. 3. In fig. 4, the feature vectors are depicted 

and, additionally, the norm ∆yt of the Delta-MFCCs is 

plotted as a yellow curve. This curve directly correlates to 

the upper half of the figure, which represents the Delta-

MFCCs. 

Conclusion 

In this paper, feature extraction for speech recognition is 

discussed. For that purpose, different normalization methods 

are evaluated using a small-size DTW-based recognition 

tool. To minimize the word error rate, several parameters of 

the feature extraction as well as the parameters of the DTW 

procedure are optimized. The evaluation shows that 

optimizing the DTW and other processing steps such as the 

limiter is successful regarding improvements of the 

recognition rate. Furthermore, the evaluation shows that the 

introduced WCMN achieves better results than the CMN, 

but is outperformed by the CVN.    
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Figure 1: Mel-scaled spectrogram of the utterance 

“Auenland”. 

 

  
time 

Figure 2: Cepstrogram of the utterance “Auenland”. 
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Figure 3: Cepstrogram of the utterance “Auenland” after 

post processing by the limiter and VAD. 
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Figure 4: Feature vectors of the utterance “Auenland” with 

Delta-MFCCs (upper half) and normalized MFCCs (lower 

half); plot of the norm ∆yt of the Delta-MFCCs (yellow 

curve). 
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