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Introduction

Due to the progress in computational power and a better
understanding of the mathematical theory, the time
domain boundary element method (TD-BEM) is recently
gaining influence in the modeling of radiation phenom-
ena. Parallel programming gave rise to computations of
real life problems in a reasonable time.

In this paper we choose a simple model problem, namely
the retarded single layer ansatz, to explain the underlying
space-time Galerkin method as proposed by Ha-Duong,
cf. [3, 4] and the references therein. We pay special
attention to the evaluation of the matrix entries involved
and briefly explain the storage scheme. Moreover, we
present some numerical experiments also exploring the
performance of the parallel computation of the matrices
involved and discuss the realization of a marching-on-in-
time (MOT) algorithm.

Model Problem

Consider the transient sound radiation of some simply
connected bounded domain Ω− into its open complement

Ω := �3 \ Ω
−

. We investigate the wave equation for the
displacement u(t, x) with t ∈ �+, x ∈ Ω

∂2u

∂t2
−Δu = 0. (1)

Assume causal functions vanishing for t < 0. u satisfies
the initial conditions

u(0, x) =
∂u

∂t
(0, x) = 0 for x ∈ Ω (2)

and Dirichlet boundary conditions on Γ := ∂Ω

u = f on R× Γ. (3)

Use a single layer potential ansatz for the solution u, such
that for x /∈ Γ

u(t, x) = Sp(t, x) =
1

4π

∫
Γ

p(t− |x− y|, y)

|x− y|
dsy

with density function p and the retarded time argument
τ := t− |x − y|. The latter connects the space and time
variables and physically results in the retarded signal of
a source point. As we will see later, this retarded time
argument has a significant impact on our discretization
scheme. As the single layer potential S is continuous, we
have for its limit on Γ with x ∈ Γ

V p(t, x) =
1

4π

∫
Γ

p(t− |x− y|, y)

|x− y|
dsy (4)

and using (3), there holds the boundary integral equation
for p

f(t, x) = V p(t, x). (5)

In [4] the following space-time variational formulation is
proposed. Find p(t, x) for x ∈ Γ, t ∈ [0, T ]

∞∫
0

∫
Γ

V p(t, x)η̇(t, x)dsx dt =

∞∫
0

∫
Γ

f(t, x)η̇(t, x)dsx dt (6)

for appropriate test functions η̇(t, x). Here the dot
indicates the time derivative. Due to the theory of
Ha-Duong [4] this formulation is uniquely solvable in
appropriate Sobolev spaces on Γ and [0,∞). It can be
solved approximately using finite element subspaces in
space and time. For some convergence results see [4] and
the references therein.

Space-Time Discretization

Choose a triangulation Th of Γ into triangles and let Vh ⊂
H−1/2(Γ) denoted by Vh = Sps

h , where ps indicates the
polynomial degree of the functions and h is the maximal
diameter of all triangles in Th. Then the density p can
be approximated in space by

ph(t, x) =

Ns∑
i=1

αi(t)ϕi(x) where ϕi ∈ Vh.

Decompose the time interval (0,∞) into uniform subin-
tervals Im := (tm−1, tm] of size Δt and with tm = mΔt

for m = 0, . . .. We represent αi(t) =
∑Nt

m=1 φm
i γm(t)

with basis functions γm for m = 1, . . . , Nt on a finite
time intervall [0, T ]. Thus for test functions η(t, x) =
γn(t)ϕj(x) the discrete approximation of (6) reads

Nt∑
m=1

Ns∑
i=1

φm
i

∫
Γ

∫
Γ

In−m(x, y)
ϕi(y)ϕj(x)

|x− y|
dsy dsx, (7)

where we evaluate the integral

In−m(x, y) :=

∫
∞

0

γm(t− |x− y|)γ̇n(t) dt (8)

analytically. For constant basis functions in time

γn(t) =

{
1 t ∈ In

0 else
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Figure 1: Sparsity pattern of retarded matrix V 0 on sphere
surface with 5120 elements. 0.25% non-vanishing entries.

we obtain for (8)

In−m(x, y) =

⎧⎪⎨
⎪⎩
1 (x, y) ∈ En−m−1

−1 (x, y) ∈ En−m

0 else

where

Ek := {(x, y) ∈ Γ× Γ : tk ≤ |x− y| ≤ tk+1} .

We refer to Ek as light cone integration domain or
domain of influence. One observes, that the value of
In−m depends only on the time difference. This gives
rise to a time stepping procedure, namely

V 0φn = Fn −

n−1∑
m=1

V n−mφm

for n = 1, . . . , Nt, where for piecewise constant basis
functions in time we have

V k
ij =

∫∫
Ek−1

ϕi(y)ϕj(x)

|x− y|
dsy dsx −

∫∫
Ek

ϕi(y)ϕj(x)

|x− y|
dsy dsx

φm = (φm
1 , . . . , φm

Nt
)T

Fn
j =

∫
Γ

(f(tn−1, x)− f(tn, x))ϕj(x) dsx.

In each time step, we have to compute a new matrix
V n−1 and a new solution vector φn. The matrices V k

are sparsely populated, compare Figure 1, as we have a
light cone integration domainEk, such that only elements
whose distance is in a certain range interact. Another
remarkable fact is, that we have the same system matrix
V 0 in each time step.

Computation of Matrix Entries

The computation of a matrix entry V k
ij always involves

the computation of an integral

Gk
ij =

∫∫
Ek

ϕi(y)ϕj(x)

|x− y|
dsy dsx.

First of all, it is sensible to compute this basic integral
only once and to reuse it in the next time step, as

V k+1
ij = Gk

ij −Gk+1
ij .

In the following, we discuss the efficient computation
of Gk

ij and the underlying MOT-algorithm. For this
purpose fix the time dependent radii to rmax = tk+1 and
rmin := tk and regard the prototype integral

Gij :=

∫∫
E

kν(|x− y|)ϕi(y)ϕj(x) dsy dsx (9)

with kν(z) = zν and

E := {(x, y) ∈ Γ× Γ s.t. rmin ≤ |x− y| ≤ rmax} .

Moreover, define the point light cone or the domain of
influence of point x ∈ �3 by

E(x) :=
{
y ∈ �3 s.t. rmin ≤ |x− y| ≤ rmax

}
.

and the domain of influence of a triangle T by

E(T ) := {y ∈ �3 : rmin ≤ |x− y| ≤ rmax , x ∈ T }.

In Figure 4 the domain of influence E(Ti′) intersected
with the triangle plane is sketched. Before we discuss the
numerical evaluation of (9), let us discuss an simplified
test for the potential interaction of two elements in E, be-
cause if two elements do not interact, the corresponding
integral vanishes and we can use the below described test
for the storage allocation in our matrices. The domain
of interaction of two elements Ti and Tj in the light cone
E satisfies

E ∩ (Ti × Tj) ⊂ (Ti ∩ E(Tj))× (E(Ti) ∩ Tj).

Let Brk
(mk) denote the circumsphere of triangle Tk with

center mk and radius rk (k = i, j). The domain of
influence E(Tk) is a subset of an annular domain defined
by its circumsphere

E(Tk) ⊂ C(Tk) := Brk+rmax
(mk) \B(rmin−rk)+(mk).

Thus, a simple test on the element interaction of two
elements in a light cone E is

E ∩ (Ti × Tj) ⊂ (Ti ∩ C(Tj))× (C(Ti) ∩ Tj). (10)

One can rewrite (9) as

Gij =
∑

Ti′ ⊂ supp ϕi

Tj′ ⊂ supp ϕj

∫∫
E∩(Ti′×Tj′ )

kν(|x − y|)ϕi(y)ϕj(x) dsy dsx

=
∑

Ti′ ⊂ supp ϕi

Tj′ ⊂ supp ϕj

∫
Tj′∩E(Ti′ )

ϕj(x)Pi,i′ (x) dsx (11)

where we define the retarded potential Pi,i′ via

Pi,i′ (x) :=

∫
E(x)∩Ti′

kν(|x− y|)ϕi(y) dsy . (12)
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Figure 2: Projection of x onto the triangle plane.

Figure 3: Example for a decomposition of E(x) ∩ Ti′ with
respect to x′ and the four generic subdomains.

Composite Quadrature rule for Pi,i′

First of all, we have to find a parametric representation
of the integration domain E(x) ∩ Ti′ . The domain of
influence of point x is an annular domain with center
x and radii rmin and rmax. Therefore, we have to find
the intersection of triangle Ti′ with two spheres. This
three dimensional intersection problem can be reduced
to a two dimensional intersection in a three dimensional
space. Let x′ denote the orthogonal projection of x onto
the triangle plane and (cf. Figure 2) and define di′ :=
|x − x′|. Then E(x) intersected with the triangle plane
is

Ei′(x) :=
{
y ∈ �3 : r̃min ≤ |x− y| ≤ r̃max

}
,

where r̃min /max := (r2min /max − d2i′ )
1/2 and thus

E(x) ∩ Ti′ = Ei′ (x
′) ∩ Ti′ .

Introduce polar coordinates (r, θ) with respect to x′ and

decomposeEi′(x
′)∩Ti′ =

nd⋃
l=1

Dl into nd ≤ 15 subdomains

defined by

Dl :=
{
(r, θ) : θ ∈ Iθl

and r ∈ (rl
1(θ), r

l
2(θ))

}
,

where Iθl
:= (θl, θl+1). rl

1,2 = rmin /max, if the upper or
lower boundary with respect to r is one of the intersecting
circles. If it is a triangle edge e with outer normal n and
vertex v, it holds

re(ϕ) =
v · n

n1 cosϕ+ n2 sinϕ
.

In Figure 3 an example for such an decomposition is given
and the four generic subdomains are sketched. Now, we

Figure 4: Intersection of triangle Tj′ with the domain of
influence of element Ti′ .

can rewrite (12), such that

Pi,i′′ (x) =

nd∑
l=1

∫
Dl

(d2l′ + r2)
ν
2 ϕi(r, θ)r(ϕ) dr dθ

≈

nd∑
l=1

Ql,k

[
(d2i′ + r2)

ν
2 ϕi(r, ϕ)r(ϕ)

]
.

The quadrature rule Ql,k denotes a the tensor product
of the k-point Gaussian quadrature rule in θ and the k-
point Gaussian quadrature in r-direction skaled to Dl.
Moreover, we apply an additional grading depending on
the kernel function kν and the regularity of rl, details
may be found in [6].

Composite Quadrature rule for Gij

If we now return to (11), a quadrature rule for the
remaining outer integral with respect to x has to be
found. Here, the integration domain Tj′ ∩ E(Ti′) is
the intersection of the domain of influence of Ti′ and
the element Tj′ . A sketch of such an intersection
can be found in Figure 4. One may ask, why such
an complicated looking decomposition is necessary,
but as we seek to use Gaussian quadrature, we have
to make sure, that the integrated function Pi,i′ is
sufficiently smooth. The support of Pi,i′ is E(Ti′)
and additionally to this cut-off behavior, we observed
singularities in the second derivatives of Pi,i′ , which will
be especially troublesome for higher order test functions
in space. For details we again refer to [6] and [1].
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Figure 5: Mesh of the surface of the sphere with 5120
elements.

i = 1;
for n = 1, . . .Nt do

if Gn−2 = 0 or i > 1 then
Domain of influence has passed the body
No more matrix evaluation needed;
i = i+ 1

else

Allocate storage for Gn−1 using (10);
Compute Gn−1;
V n−1 = Gn−2 −Gn−1;
Delete Gn−2;

end

Compute right hand side
Rn = Fn −

∑n−1
m=i V n−mφm;

Solve V 0φn = Rn;
Store new solution vector φn.

end

Algorithm 1: Time Stepping Algorithm

Numerical Examples

The numerical example uses a benchmark provided in
[5]. We apply the above described retarded single layer
ansatz with a space time Galerkin discretization. The
surface mesh of Γ := ∂B1(0) is generated by a recursive
refinement of the icosahedron, compare Figure 5. All
computation were done in the program packageMaiProgs
[2]. The matrix computation, the most expensive part,
is parallelized using OpenMP. The results presented are
computed on a Dual-Intel Xeon 2,5 GHz with 8 cores and
8GB. The time step size was Δt = 0.03125 and for 5120
elements the ratio between time and space step size was
0.378. For this configuration the first 64 matrices have
to be stored, because for larger time steps the domain
of E has passed Γ and the integration domain vanishes.
The matrix entries were computed using the composite
quadrature rule for P as explained before and a standard
hp-quadrature for the outer integral (11) with a grading
strategy toward the vertices and edges of the element
in the near field and a standard quadrature in the far
field. A decomposition in the according element light
cone is currently work in progress. In Figure 6(a) the
percentage of allocated matrix entries is compared with
the percentage of actually non-vanishing matrix entries.
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Figure 6: Comparison of storage allocation and computation
times.
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Figure 7: Long time stability (t = 0 . . . 31).

In Figure 6(b) the wall time for the matrix computation
is plotted for each time step. The first matrix V 0

(cf. Figure 1) was computed with greater accuracy, as
it is the system matrix. Due to the grading quadrature
in the near field the first few matrices are quite expensive,
although they are relatively sparse compared to later
time steps. Although the outer quadrature is not yet
optimal, we obain a longtime stable solution as plotted
in Figure 7 for 1000 time steps.
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