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Introduction
The boundary element method (BEM) is a widely used
numerical tool. Calculations may be performed in the
frequency domain (FD) or in the time domain (TD). The
fundamentals of the TD-BEM were developed in 1960
from Friedman and Shaw [1] and later in 1968 from Cruse
and Rizzo [2]. The FD-BEM is limited to the simulation
of stationary processes. Instationary processes like
moving sources, engine acceleration, impulses etc. must
be simulated in the time domain. Mansur [3] developed
one of the first boundary element formulations in the time
domain for the scalar wave equation and for elastody-
namics with zero initial conditions. The extension of this
formulation to non-zero initial conditions was presented
by Antes [5]. Later Jäger [6] and Antes and Baaran [7]
extended the time domain formulations to analyze 3D
noise radiation caused by moving sources. Since then this
method is subject to continuous enhancement, whereby
however the frequency range algorithms exhibit a clear
lead in development.

The main reason that the TD-BEM-Method is not being
commercially used till now is the instable behavior that
may appear. Ergin et al [8], Chappell et al [9] and
Stütz and Ochmann [10] showed numerical evidence that
the instable behavior is caused by the eigenfrequencies
of the structure. Ergin and Chappell used the Burton-
Miller-Method [11] to prevent instabilities. In this paper
a different approach, the use of the so-called CHIEF
Method, will be presented.

Numerical model
A detailed derivation of the boundary integral equation
used here can be found e.g. in Meise [4].
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p denotes the sound pressure, r the distance between
the observation point and source point and c the speed
of sound. Γ is the boundary surface and q is the flux,
following the relationship derived from Eulers equation
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The index ret in Eq 1 states that all variables are
taken with respect to the retarded time tret = t − r

c .
Discretizing time itself in equidistant time steps ti =
iΔt with (i = 1, 2, ...) we get tri = iΔt − r

c for the

retarded time. The boundary surface Γ is divided into N
planar elements with a uniform spatial pressure and flux
distribution. For q a constant approach and for p a linear
approach in time are chosen. A more detailed description
can be found in [10] and [13]. With these approaches one
can derive the following discretized integral equation
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Using the Collocation method the following correspond-
ing linear system of equations can be derived

− 2πp̂i =
μmax∑
μ=1

Gμq̂i−μ+1

+
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Hμ [μp̂i−μ+1 − (μ − 1)p̂i−μ] . (5)

Gμ and Hμ are square matrices describing the system at
a relative time step μ = i − m + 1. The matrix entries
are calculated in the following way
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Compared to the FD-BEM the resulting matrices
are very sparse, because for each matrix with index
μ the integration must only be performed within
the integration limits of an inner radius (μ − 1)cΔt
and an outer radius μcΔt. A difficulty that arises
from that condition is that one must not integrate
over the whole element but over the part that lays
within the integration limits. The sparsity of the
matrices is explained due to the fact that most
elements are not within the integration limits and
therefore have a zero entry. Eq. 5 can be written as
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to solve the time response at once. This results in 2
Block-Toeplitz-Matrices that are not easy to handle
because of the relatively big size of (number of elements
x time steps)2. Thats why the time response is solved
in an iterative way, starting with solving the first row of
Eq. 8 (−2πp̂1 = G1q̂1 + H1p̂1) and proceeding till the
last row. This approach is numerically much easier to
handle.

Accuracy and stability
A common problem of the TD-BEM reported in the
literature is the occurrence of spurious instabilities. In
case of instability the results start to oscillate at high
frequency with exponentially rising amplitude. To look
at the stability of the method the iterativ solving process
can be written as

pi = Tpi−1 + φi (9)

with T being the system operator. If all eigenvalues of T
lay within the unit circle the system can be considered
as stable, because p can not grow with proceeding time
if φi = 0.

We are now looking at the simple example of a sphere
with r = 1m consisting of 384 flat rectangular ele-
ments. Figure 1 shows that for this given example
the eigenvalues lay all within the unit circle. But with
decreasing time step the absolut values of the eigenvalues
are increasing, making the system less stable.

Using the sphere to simulate a monopol the results are
stable as shown in Figure 2. But apparently the sound
radiated by the sphere is influenced by the eigenfrequen-
cies of the structure. This connection however is still
mathematically unproven. In Figures 2, 3 and 5 the
eigenfrequencies are marked by the vertical dotted lines.
The influence of the eigenfrequencies depends strongly
on β, which describes the ratio of time step size Δt and
element size h.

β = cΔt/h (10)

Small changes of β can change the influence of the
eigenfrequencies substantially. Nevertheless in none
of the examined cases an unstable behavior, like an
exponential rise of the sound pressure, could be observed.

With decreasing β the evaluation of the matrix entries
is getting more complicated, because the intersection of

integration area and element is becoming much smaller
than the element itself. The integrals are evaluated
numerically using a Gauss Quadratur. By increasing the
numbers of Gauss points the accuracy can be increased
which will decrease the influence of the eigenfrequencies
to a certain degree, as can be seen in Figure 3. The
influence does not vanish but the aberration from the
analytic solution does not exceed 1 dB.
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Figure 1: Example of eigenvalues within unit circle of system
operator T for different time step sizes (a) and (b)
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Figure 2: Influence of eigenfrequencies for different β on
sound radiation of test sphere )
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Figure 3: Influence of eigenfrequencies depends on accuracy
of integration, results for different numbers of Gauss Points
are shown

CHIEF Method
The problem of the natural frequencies is well known
in frequency domain BEM calculation, also called the
nonuniqueness problem. Various methods have been de-
rived to find a modified equation with a valid solution for
all frequencies. Well known approaches are the combined
field integral equation by Burton and Miller [11] and
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the combined Helmholtz integral equation formulation
(CHIEF) by Schenk [12]. For time domain calculations
first Ergin [8] in 1999 and later Chappell et al [9] in
2006 used a Burton-Miller approach to avoid the above
described problem.

The principle of the CHIEF method is very simple. As
shown in section “Numerical model” a linear system of
equations can be derived using the collocation method.
The collocation points are located on the boundary
surface. Placing some additional points inside of the
structure we can derive a second linear system of equa-
tions. But in this case we set the pressure in this points
to zero to force the inner sound field to zero.

0 =
cmax∑
μ=s

Gc
μq̂i−μ+1

+
cmax∑
μ=s

Hc
μ [μp̂i−μ+1 − (μ − 1)p̂i−μ] (11)

If we combine both linear systems Eq. 5 and
Eq. 11 we get an overdetermined system.
As an example here the resulting matrix
containing all Hμ and Hc

μ matrices is shown
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The matrix containing the Gμ and Gc
μ matrices is set up

in a similar way. To the authors knowledge the use of the
CHIEF method in time domain BEM calculations was
never shown before. This may have different reasons.
One reason is that the CHIEF method does not work
using the iterativ solution process. Applying the method
to the non-iterativ one-step solution makes it necessary
to solve the huge rectangular matrix (Eq. 12). The
solution process is not an easy task because of the
immense size of the matrices involved. To deal with
this problem, the special symmetry of the matrices
must be used. Using an iterativ solver that can handle
rectangular matrices, like the LSQR method, only one
line of the matrix has to be build at a time. The results
in Figure 5 show that the CHIEF method successfully
regularizes the solution at the inner eigenfrequencies of
the structure.

Test cases - circular piston and
railway wheel
A good test case to see if this method can simulate the
sound radiation of railway wheels is a circular piston.
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Figure 4: CHIEF points are located inside of the structure
and collocation points are located on the surface
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Figure 5: The use of CHIEF points prevents the influence
of eigenfrequencies.

The analytical far field approximation for a circular
piston in an infinite wall can be found in the literature:

p(r, α) = iω�υnR2 e−ikr

r
· J1(kRsinα)

kRsinα
(13)

Figure 6 shows the test results for 2 immission points.
Both points are located in 7.5m distance, P1 with
hight h=1.2m and P2 with h=3m as can be seen in
Figure 7. The results show a very good agreement with
the analytical solution. Also the directivity which can
be observed in point P2 is reproduced quite well. The
difference in the low frequency region is expected. Short
circuit effects of the numerical model without wall are
not present in the analytical model with an infinite wall.

A second test case examined the sound radiation of a
railway wheel. The impulse response function in the time
domain was calculated by a FEM calculation. Based
on these data the sound radiation of the wheel could
be calculated. A comparison to a FD-BEM calculation
performed with Virtual Lab, shows a good agreement
(Figure 8). There is no measurement data available, so no
conclusion about the simulation accuracy can be made.

Conclusion
The TD-BEM is a promising method for the computation
of the transient sound radiation. Numerical test cases
show the reliability and stability of this method. The
accurate evaluation of the boundary integrals plays a fun-
damental role, because errors in the integration process
seem to stimulate the influence of the eigenfrequencies
of the structure. In order to ensure accurate simulation
results, it was shown that the CHIEF method can be
used to regularize the eigenfrequencies. More research
regarding the efficiency and the limits of the CHIEF
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Figure 6: Sound radiated by a circular piston (in free field),
compared to far field approximation (in infinite wall).

Figure 7: Setup of circular piston test case with 2 immission
points located in 7.5m distance, P1 with hight h=1.2m and
P2 with h=3m.

method in TD-BEM calculations has to be done. The
results will be presented in one of the next publications.
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Figure 8: Sound radiation of an railway wheel computed
with TD-BEM and V-Lab (FD-BEM).
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