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Introduction 
Gasoline direct injection systems are characterized by a high 
system pressure and high valve dynamics. Therefore 
oscillating pressure pulsations and waterhammer phenomena 
are common effects. In the view of acoustics an extended 
modelling approach is required in order to capture all 
physical effects. 

In general, such hydraulic systems, including pipes, diameter 
changes, orifices and volume chambers, are modelled by a 
1D approach, and steady state pipe friction, being well 
established and validated, is assumed. But oscillating 
pressure pulsations and waterhammer effects need to be 
modelled with unsteady frequency dependent attenuation, 
which has approved solutions in time and frequency domain. 
This is necessary because the damping mechanisms directly 
influence the quantitative prediction of the fluid sound level 
and therefore all other depending acoustic quantities.  

But common frequency domain approaches so far do not 
account for flow-related effects. Even in the case of no mean 
flow, oscillating pressure pulsations create nonlinear 
velocity dependent resistance at orifices and diameter 
changes. In the case of high frequency oscillations, the 
steady state orifice law according to Bernoulli 
underestimates real effects. Therefore the unsteady orifice 
behaviour is investigated. Further on the limits of validity of 
the no flow assumption are inspected with an experimental 
setup and compared to published results. 

Steady and Unsteady pipe friction  
A constant pressure gradient Δp along the axis of a circular 
pipe filled with an incompressible fluid, results in the well-
known Hagen-Poiseuille flow which implies a parabolic 
velocity distribution. This results in the steady state 
resistance per length in the case of laminar flow 
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where μ is the dynamic viscosity and r is the radius of the 
pipe.  

In unsteady laminar flow the pressure gradient is time 
dependent. The velocity distribution is no longer parabolic 
because the viscous effect is concentrated in a thin layer 
close to the pipe wall. The thickness  
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of this viscous boundary layer depends on the kinematic 
viscosity ν and the angular frequency ω. If the acoustic 
wavelength is large compared to the radius and large 
compared to the boundary layer thickness, the series 
impedance based on unsteady frequency dependent friction 
is 
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where J0 is the Bessel function of first kind, zeroth order and 
J2 is the Bessel function of first kind, second order. With the 
fluid density ρ and the orifice area A the per length inertance 
is defined as 

A
L ρ=′ . (4) 

The series impedance in general is given as  

LiRZ ′+′= ω . (5) 

Therefore the per length resistance of the unsteady frequency 
dependent friction is calculated by taking the real part of 
equation 3.  

The resistance and impedance values can directly be 
implemented in the transfer matrix method (TMM). An 
overview of this method for distributed pipe elements with 
different friction models is given in [1]. The TMM uses a 
transfer matrix to create the relation between two input 
parameters and two output parameters in the frequency 
domain. In hydraulics the in- and output variables are in 
terms of pressure and flow rate.    

Orifice Law 
The steady state Bernoulli equation is described by the 
equation 

ρ
pAcq d

Δ= 2
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where q is the volume flow and cd is the discharge 
coefficient. For low Reynolds numbers the discharge 
coefficient increases with the Reynolds number while for 
high Reynolds numbers the discharge coefficient reaches a 
constant value of about 0.7. Following [2] the orifice 
resistance is evaluated as 
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where the discharge coefficient is constant. For further 
calculations in this work the dimensionless loss parameter σ 
is used to replace 1/cd².  

Measurement Setup 
Figure 1 depicts the geometry of the test case presented in 
this work. It consists of two pipes joined by an orifice and 
filled with water. The pipes have an inner diameter of 
4.6mm. The length of the first pipe is 250mm while the 
length of the second one is 300mm. 

The experimental setup uses two axisymmetric piezo 
actuators to generate a flow excitation at the inlet of the 
specimen. The voltage signal that activates the actuators 
follows a sine-sweep up to several kilohertz. The 
measurement procedure is explained in more detail in [4]. 

The pressure pulsations are measured at the inlet and the 
closed end. The transfer function is evaluated from those two 
signals. The damping ratio is evaluated from the transfer 
function through curve fitting at the eigenfrequencies. 

P Closed end

Pipe 2Pipe 1

Orifice

Measurement 1 Measurement 2

Transfer Function

Figure 1: The investigated test case consisting of three 
fluid columns. 

Experimental Results  
First of all a simple pipe of total length 550mm is 
investigated, where no orifice is present. The resulting 
transfer function is compared to the result of the TMM with 
unsteady frequency dependent friction in Figure 2. The 
amplitudes at the eigenfrequencies of the measured transfer 
function are lower than the calculated ones. This is 
especially true for the first two peaks. On the other side the 
eigenfrequencies fit very well. The minor deviations at 
1.5_kHz and 5 kHz are a result of structural resonances. 
From the transfer function the damping ratio is evaluated at 
every peak. This is done by analyzing the peakwidth of the 
half power points of each single mode. The resulting 
damping ratios are plotted in Figure 3. Of course the 
damping ratios of the TMM are exactly on the theoretical 
values. The damping ratios of the measurement are close to 
the TMM values. The first mode shows the biggest 
deviation, which is also true for all succeeding 
measurements. Due to this systematic deviation, the first 
mode is not considered in the final evaluation. The damping 
ratio of the third mode fits the predictions quite well, while 
the results of the fourth to the seventh mode show slightly 
increased values. Between 8 and 9 kHz the measurement 
setup starts to show the influence of the actuator 

eigenfrequency. Therefore only the first seven 
eigenfrequencies are taken into account. 

In the next step a circular orifice with sharp edges is built 
between two pipes, which correspond to the test case 
described in the previous section. Here the orifice is 2 mm 
long and has a diameter of 1.2 mm. Figure 4 shows the 
corresponding transfer function. Again the eigenfrequencies 
fit quite well except for the one at 8 kHz, while the peak 
heights of the measurements are lower than the TMM 
calculations. The damping ratios are depicted in Figure 5. 
Certain modes of the TMM results show a higher damping 
ratio than the simple pipe. This is because the higher local 
attenuation of the fluid column in the orifice applies at a 
position of a high pressure gradient. In this setup, those are 
the modes with uneven numbers. Modes with even numbers 
have almost the same eigenfrequency and damping ratio as 
in the case with the simple pipe. Again the first mode of the 
measurement has an unrealistic low value for the damping 
ratio. Over all modes the measurements show a higher 
damping ratio as the TMM. This results from the additional 
velocity dependent resistance in the orifice, which is 
explained in the next section. The difference between even 
and uneven modes remains visible in the measurements.  
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Figure 2: Calculated and measured transfer function for the 
simple pipe. 
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Figure 3: Damping ratios evaluated from the calculated 
and measured transfer function of the simple pipe. 
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Now the influence of the excitation level is investigated. An 
orifice with a diameter of 0.9mm and a length of 2mm in the 
test case shows a clear influence of the pressure excitation. 
Figure 6 and Figure 7 show the transfer functions and 
damping ratios, respectively. Again the uncertainty for the 
first mode is very high. The third and the fifth mode show a 
clear influence of the excitation level. The test case with 
orifice compared to the simple pipe attenuates especially the 
uneven modes. A variation of the excitation level also leads 
to an increased attenuation of the uneven modes. Clearly the 
standard TMM is not capable to account for a change in 
excitation level. 

Velocity Dependent Resistance in TMM  
The TMM so far is only capable to account for the frequency 
dependent friction. In order to account for the Bernoulli 
effect in the frequency domain, the resistance from 
equation_7 is added to the resistance resulting from the 
unsteady viscous boundary layer. Therefore the resistance 
becomes dependent on the amplitude of the velocity in the 
orifice. But the velocity in the orifice also depends on the 
resistance of the orifice. Hence the TMM must be solved 
iteratively. There is only one valid parameter combination 
per frequency.  
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Figure 6: Experimental transfer function for a variation of 
the excitation level for the test case with a 0.9x2mm orifice. 
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Figure 7: Damping ratios of the TMM and the 
measurements for the test case with a 0.9x2mm orifice. 

 
Figure 8 depicts the procedure, which calculates the 
damping ratio from the input pressure and a given discharge 
coefficient. With this approach it is possible to compare the 
quasi-steady orifice law and a fit to the experimental results. 
The quasi-steady orifice law assumes a constant value for 
the loss coefficient σ in the resistance equation of the orifice. 
The experimental fit uses an optimization routine to find the 
σ values for the single measurements. Besides the geometry 
and the material properties the optimization algorithm needs 
the experimental input pressure in the frequency domain and 
the damping ratio of the third mode. 

Evaluation of Results 
The results from this approach are depicted in Figure 9. For 
the quasi-steady orifice law the loss coefficient σ is 2 while 
it increases from 1.9 to 2.3 and 4.0 with the orifice velocity 
for the experimental fit calculation. In the case of the lowest 
excitation level the damping ratio as well as the velocity in 
the orifice agree very well. For higher excitation levels the 
damping ratio is too low as well as the velocity amplitude in 
the orifice is too high compared to the experimental fit 
calculations.  

For low orifice velocities the resistance due to Bernoulli 
becomes negligible. Therefore only the resistance from the 
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Figure 4: Calculated and measured transfer function for the 
test case with a 1.2x2mm orifice. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

frequency [Hz]

da
m

pi
ng

 ra
tio

TMM
Measurement
Theory (Pipe)

Figure 5: Damping ratios of the TMM and the 
measurements for the test case with a 1.2x2mm orifice. 
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viscous boundary layer is important, which is also depicted 
in Figure 9. The velocity range for which this statement is 
approximately true, is an important question for the choice 
of the appropriate and efficient calculation tool. In the 
present case the low velocity approximation is plotted as far 
as 0.4 m/s. This results from a statement made by [5]. Here a 
non-dimensional orifice velocity of 3 is used to separate the 
linear form the nonlinear behaviour. The non-dimensional 
orifice velocity is calculated by dividing the regular orifice 
velocity by υω . This statement is made on the basis of 
correlation of published experimental data for thin orifices 
(l/d  0). In the present case the length to diameter ratio is 
2.22.  

Further on the nonlinear region ranges from a non-
dimensional velocity value of 3 to 100 [5]. Here the 
transition from no velocity dependence to a more or less 
linear dependence is noticed. Above a value of 100 the 
resistance is roughly linear with the velocity. As shown in 
the work of [6] the frequency dependence is gradually lost 
between values of 3 and 100 for the non-dimensional orifice 
velocity. But the range of measurements with very high 
orifice velocities is not wide enough to make a clear 
statement about the quasi-steady behaviour [5]. 

An increase of σ with the orifice velocity is also recognized 
in [3]. At high velocities in the orifice σ seems to reach a 
maximum. In order to compare the experimental results of 
this work to the statements made in [5], the non-dimensional 
velocity is calculated. It ranges from 3.7 to 6.8 for the results 
of the experimental fit depicted in Figure 9. 

Conclusion  
A method to evaluate the effect of unsteady pipe friction and 
unsteady orifice resistance is presented. Velocity dependent 
resistance is added to the standard TMM modelling 
approach. 

Following [5] the resistance of orifices can be divided into 
three velocity ranges. For very low orifice velocities only the 
unsteady pipe friction in the orifice is important and the 
resistance is therefore frequency dependent. For high orifice 
velocities the resistance seems to depend only on the 
velocity. In the medium range the influence of the frequency 
dependent friction decreases while the velocity dependent 
resistance becomes more important.  

This nonlinear region is investigated in this work. So far the 
resistance due to unsteady pipe friction is added to the 
resistance due to velocity dependent orifice friction.  

According to the measurements and the calculations the loss 
coefficient in unsteady flow increases with the velocity 
amplitude in the orifice. The values for the loss coefficient in 
unsteady flow are higher than common values for steady 
state conditions. 

Measurements of additional geometries could improve the 
knowledge in a wider orifice velocity range. Furthermore the  
low and high velocity approximations could be investigated 
in the future. 
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Figure 8: TMM with velocity dependent resistance of the 
orifice, where tf is the transfer function and dr is the 
damping ratio. 
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Figure 9: Damping ratio of the third mode plotted over orifice 
velocity for different calculation schemes (test case with 0.9x2mm 
orifice). 
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