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Introduction
Diagnostic ultrasound imaging (DUSI) is a real-time
imaging modality which provides anatomic and, by the
administration of targeted ultrasound contrast agents
(UCA), also molecular imaging capabilities. UCA con-
sist of encapsulated gas-filled microbubbles with mean
diameters ranging between 1 – 6 �m [1]. In ultrasound
pressure fields, the microbubbles demonstrate nonlinear
volume oscillations which give rise to harmonics of the
fundamental frequency of the incident sound wave in the
scattered sound [1, 2]. In general, also wave propagation
in tissue is nonlinear and must be taken into account.

Sophisticated physical models exist for both, microbub-
ble oscillations as well as nonlinear wave propagation.
They are usually given in terms of nonlinear differen-
tial equations. However, current strategies for UCA
detection, e. g. phase inversion imaging [3], harmonic
imaging [4] or pulse subtraction imaging [5], neglect
those and rely on simple mathematical descriptions.
These encompass characteristic curves or black box
operators accounting only for general properties of a
system, e. g. nonlinearity. One major reason for
these simplifications is the lack of an intuitive, well-
interpretable and manageable means to model nonlinear
effects.

This contribution recommends Volterra series as a tool
to solve nonlinear differential equations and to describe
the nonlinear effects encountered in DUSI with sufficient
accuracy. As an example, a solution to the Burgers equa-
tion [6] for nonlinear dissipative plane wave propagation
outside thermoviscous boundary layers will be derived
analytically in terms of a Volterra series. Its region of
convergence will be investigated and results of its ex-
perimental validation will be presented. An application
of Volterra series to pulse subtraction imaging [5] will
emphasize the capabilities of nonlinear system theory in
state-of-the-art ultrasound imaging.

Functional Description of Nonlin-
ear Systems by Volterra Series
Volterra series can describe the input-output relations of
a huge subset of nonlinear systems analytically. They
are a generalization of the Taylor series expansion of
a function and were first studied by Vito Volterra in
the 1880s [7]. The first application of Volterra series to
nonlinear system theory was by Norbert Wiener [8].

Let t ∈ R denote time in seconds and let x : R �→ R as
well as hn : R

n �→ R, n ∈ N, indicate real functions. The

system with the input-output relation

yn(t) = Hn

[
x(t)

]
=

∫
· · ·

∫
Rn

hn(ν1, . . . , νn)x(t− ν1) · · ·
× x(t− νn)dν1 · · · dνn

(1)

is then called a time-invariant homogeneous system of
degree n [9]. According to [8], the operator Hn is referred
to as homogeneous Volterra operator of order n and hn

is its associated Volterra kernel. The additive parallel
connection of an infinite number of time-invariant ho-
mogeneous systems of distinct degrees yields a Volterra
system whose input-output relation

y(t) = H
[
x(t)

]
=

∞∑
n=1

Hn

[
x(t)

]
(2)

is described by a Volterra series [9]. The operator H
will be referred to as Volterra operator in the sequel. It
will be also employed to identify a Volterra system with
the input-output relation (2). Since the integrals in (1)
resemble n-dimensional convolutions, the Volterra series
(2) can be interpreted as a power series in x with memory.

Discontinuous input-output relations as well as input-
output relations which exhibit saturation effects cannot
be modeled exactly by Volterra series [10].

Analytical Solution to the Burgers
Equation
The combined influences of nonlinearity and dissipation
on the propagation of plane progressive sound waves can
be predicted by the Burgers equation [6]. Its domain of
validity includes only nonreacting, weakly thermoviscous
fluids and excludes thermoviscous boundary layers. Let p
indicate the acoustic pressure, ρ0 ambient mass density,
c0 small-signal sound speed, β the coefficient of nonlin-
earity, and δ sound diffusivity. The Burgers equation for
sound propagation along the z-axis is then given by

∂p(z, τ)
∂z

− δ

2c0
3

∂2p(z, τ)
∂τ2

=
β

ρ0c0
3
p(z, τ)

∂p(z, τ)
∂τ

, (3)

where τ = t− zc0
−1 denotes the retarded time.

An innovative analytical solution to a strongly modified
version of the Burgers equation for the special case of
nonlinear plane wave propagation in cylindrical ducts
employing a parameter-dependent Volterra operator was
introduced in [11]. It allows for losses induced by
thermoviscous boundary layers. However, the same
approach can also be adopted to solve (3).
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In the following, the parameter-dependent Volterra sys-
tem H(Δz) is assumed to account for plane wave prop-
agation according to (3). It maps the acoustic pressure
p(z1, τ) into the acoustic pressure p(z, τ) at an arbitrary
location z ≥ z1. The superscript Δz = z − z1 indicates
the plane wave’s propagation distance. Moreover, it is
possible to decompose the Burgers equation (3) into a
nonlinear interconnection of four linear time-invariant
(LTI) systems, whose output signal vanishes. The input
signal to each LTI system is p(z, τ). Consequently,
the output signal of the serial connection illustrated
in Figure 1 must vanish, too. For convenience, the
physical parameters employed in (3) are replaced by
a = δ(2c0

3)−1 and b = β(ρ0c0
3)−1.
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Figure 1: Serial connection of the parameter-dependent
Volterra system H(Δz) and the nonlinear interconnection of
four LTI systems derived from the Burgers equation (3).
The acoustic pressure p(z1, τ) is mapped into 0 by the serial
connection.

Employing the interconnection theorems for Volterra sys-
tems [9] yields the set of ordinary differential equations
(ODE)

∂

∂z
H(Δz)

n (s1, . . . , sn)− a(s1 + · · ·+ sn)2H(Δz)
n (s1, . . . , sn)

= b

n−1∑
m=1

(s1 + · · ·+ sm)H(Δz)
m (s1, . . . , sm)

×H
(Δz)
n−m(sm+1, . . . , sn)

(4)

for the associated Volterra kernels H
(Δz)
n in Laplace

domain, where si = σi + jωi, 1 ≤ i ≤ n, denote the
complex frequencies. Noting the circumstance, that H(0)

is, by definition, the identity operator gives rise to the
initial conditions

H(0)
n (s1, . . . , sn) =

{
1 for n = 1,

0 for n ≥ 2.
(5)

It can be proved by induction, that the unique solution
to the set of initial value problems (IVP) (4) and (5) is
given by the recurrence relation

H(Δz)
n (s1, . . . , sn) = − b

2asn

[
H

(Δz)
n−1 (s1, . . . , sn−1)

×H
(Δz)
1 (sn)−H

(Δz)
n−1 (s1, . . . , sn−2, sn−1 + sn)

] (6)

for n ≥ 2, where H
(Δz)
1 (s1) = eas1

2Δz. The Volterra
system H(Δz) is completely determined by the knowledge

of (6) and H
(Δz)
1 . Note that an explicit recurrence

relation in terms of Volterra kernels in Laplace domain
was not established in [11].

The analytic computation of the corresponding Volterra
kernels h

(Δz)
n in time-domain is trivial only for n = 1.

The first-order Volterra kernel is the well-known Gauss
impulse

h
(Δz)
1 (τ1) = h

(Δz)
1 (τ) =

1√
4πaΔz

e−
τ2

4aΔz . (7)

For n ≥ 2, the Volterra kernels h
(Δz)
n can be computed

numerically by inverse multidimensional discrete Fourier
transforms (DFT) and by considering the sampling the-
orem.

Normalized versions of the Volterra kernel (7) and the
symmetric [9], band-limited Volterra kernel h

(Δz)
2,sym,l are

illustrated in Figure 2 for three propagation distances
Δz1 = 5 mm, Δz2 = 1 cm, and Δz3 = 5 cm. The
fluid is assumed to be distilled water at ambient tem-
perature T0 = 20 ◦C and ambient pressure P0 =
1013 hPa (ρ0 = 998 kg m−3, c0 = 1482.87 m s−1, δ =
4.2514× 10−6 m2 s−1, β = 3.5). To derive h

(Δz)
2,sym,l,

two-dimensional 801-samples inverse DFTs at sampling
frequency fs = 10 GHz were employed. The reference
values for normalization are

h1,ref = h
(Δz1)
1 (0) ≈ 1.56× 108 s−1, (8)

h2,ref = max
−400≤k1,k2≤400

{
h

(Δz1)
2,sym,l[k1, k2]

}
≈ 2.7× 1010 Pa−1 s−1, (9)

for the kernels h
(Δz)
1 and h

(Δz)
2,sym,l, respectively.
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Figure 2: Normalized Volterra kernels h
(Δzi)
1 (a) and

normalized Volterra kernels h
(Δzi)
2,sym,l (b – d) for three

propagation distances Δz1 = 5 mm (solid line, b), Δz2 =
1 cm (dashed line, c), and Δz3 = 5 cm (dash-dotted line, d).
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In consideration of an application of the derived Volterra
system H(Δz) in DUSI the investigation of its region of
convergence Rh(Δz) is mandatory. Convergence of H(Δz)

implies bounded-input, bounded-output (BIBO) stability
for acoustic pressures satisfying

∥∥p(z1, τ)
∥∥
∞ = max

τ∈R

{∣∣p(z1, τ)
∣∣} < Rh(Δz).

Again, a common approach as used in [11] can be
adopted. It is assumed, that there exist gΔz > 0,
KΔz > 0 as well as n0 ∈ N, such that the associated
Volterra kernels satisfy

∥∥h(Δz)
n

∥∥
1

=
∫
· · ·

∫
Rn

∣∣h(Δz)
n (τ1, . . . , τn)

∣∣dτ1 · · · dτn

≤ KΔzgΔz
n < ∞,

(10)

for n ≥ n0. Additionally, ‖h(Δz)
n ‖1 < ∞ for 1 ≤ n < n0

is required. As a consequence

∣∣p(z, τ)
∣∣ ≤ n0−1∑

n=1

∣∣∣H(Δz)
n

[
p(z1, τ)

]∣∣∣ +
KΔzgΔz

n0
∥∥p(z1, τ)

∥∥n0

∞
1− gΔz

∥∥p(z1, τ)
∥∥
∞

< ∞

for gΔz‖p(z1, τ)‖∞ < 1 due to the properties of the
geometric series combined with definition (2). Thus,
the Volterra series converges absolutely with region of
convergence Rh(Δz) = gΔz

−1.

Taking into account that H(0) is the identity operator
with Rh(0) →∞, the region of convergence Rh(Δz) may
be expected to be greater than 1 Pa for several propa-
gation distances Δz > 0. This circumstance implies 0 <

gΔz < 1. Due to the inequalities |H(Δz)
n (jω1, . . . , jωn)| ≤

‖h(Δz)
n ‖1 the asymptotic behavior of the Fourier trans-

formed Volterra kernels for n � n0 is∣∣H(Δz)
n (jω1, . . . , jωn)

∣∣ ≈ KΔzgΔz
n. (11)

The quotient of the absolute values

R̂
(Δz)
h (n) =

∣∣H(Δz)
n (jω1, . . . , jωn)

∣∣∣∣H(Δz)
n+1 (jω1, . . . , jωn+1)

∣∣
≈ 1

gΔz
= Rh(Δz)

(12)

for n � n0 lends itself as an approximation for the
region of convergence. If condition (10) is met, the
quotient (12) must approach a constant value as n grows.
This behavior was observed in numerical computations.
Due to the knowledge of the recurrence relation (6), the
region of convergence can be approximated for arbitrary
values n ∈ N by employing (12). In [11] only the first
nine Volterra kernels in Laplace domain were used to
investigate convergence.

The approximation (12) was computed for propagation
distances Δz ranging from 1 mm to 5 cm for n = 103.
To avoid singularities and for convenience all angular
frequencies ω1, . . . , ωn+1 in (12) were identically set to

ω0,j = 2πf0,j . Mathematically, the choice of ω0,j is
arbitrary and does not influence the asymptotic behavior
(11). Four different values f0,j were employed. The
corresponding results are illustrated in Figure 3 (dashed
lines). The curves differ due to the finite order n = 103.
Their minimal values (solid line) are assumed to indicate
the true region of convergence. As before, the fluid is
distilled water at identical environmental conditions.
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Figure 3: Approximation (12) for propagation distances Δz
in the range from 1 mm to 5 cm for n = 103.

The derived Volterra series was validated experimentally.
The degree-2 Volterra polynomial was combined with the
angular spectrum approach, which accounts for linear
diffraction effects according to the Helmholtz equation,
in a second-order fractional steps scheme, as presented
in [12]. A 1.27 cm diameter transducer (Panametrics-
NDT C306) spherically focused at 45 mm and submerged
in distilled water at T0 = 20 ◦C was employed for
measurements. Its center frequency was fc = 2.25 MHz.
After eleven succeeding propagation steps of length 5 mm
the relative error between the calculated and measured
waveforms was smaller than 20 % for acoustic pressures
up to 1 MPa and smaller than 15 % for acoustic pressures
up to 500 kPa. Only waveforms along the transducer’s
axis were considered. Volterra polynomials of higher
degrees did not yield different results for propagation
steps of length 5 mm.

Consequently, the application of the derived Volterra
series in DUSI is appropriate. The following section
will demonstrate the advantages of nonlinear system
theory in the interpretation and optimization of pulse
subtraction imaging.

Application to Pulse Subtraction
Imaging
In pulse subtraction imaging three excitation signals x1,
x2, and x3 are utilized [5]. For t1 < t2 < t3 they must
satisfy

x1(t) = 0 for t ≤ t1 ∧ t > t2,

x2(t) = 0 for t ≤ t2 ∧ t > t3, (13)
x3(t) = x1(t) + x2(t) for t ∈ R.

Except for the requirements (13) the choice of x1 and x2

is arbitrary.
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Employing the operator G to model the signal chain of
a DUSI system, the following operation is performed on
the corresponding received signals G

[
xj(t)

]
χ(t) = G

[
x3(t)

]−G
[
x1(t)

]−G
[
x2(t)

]
. (14)

For a Volterra operator G describing an LTI system (gn =
0 for n ≥ 2) or a memoryless system (gn(t1, . . . , tn) =
αnδ(t1, . . . , tn), αn ∈ R) the residual signal χ vanishes.
This circumstance was demonstrated in [5]. However,
for a general Volterra operator G with the associated
symmetric kernels gn,sym the residual signal results in

χ(t) =
∞∑

n=2

n−1∑
j=1

(
n

j

) ∫
· · ·

∫
Rn

gn,sym(ν(n)
j,1 , . . . , ν

(n)
j,n )

×
n−j∏
i=1

x1(t− ν
(n)
j,i )

n∏
i=n−j+1

x2(t− ν
(n)
j,i ) (15)

× dν
(n)
j,1 · · · dν

(n)
j,n .

Due to (13), the product terms within the integrals (15)
are nonzero only for certain relationships between the
integration variables ν

(n)
j,i . Let In,1(j) = {1, . . . , n − j}

and In,2(j) = {n− j + 1, . . . , n} for 1 ≤ j ≤ n− 1, then
for each order n ≥ 2 the n− 1 sets of inequalities

|ν(n)
j,k − ν

(n)
j,l | < t2 − t1 for k, l ∈ In,1(j),

|ν(n)
j,m − ν

(n)
j,p | < t3 − t2 for m, p ∈ In,2(j), (16)

0 < ν
(n)
j,k − ν

(n)
j,m < t3 − t1 for k ∈ In,1(j) ∧m ∈ In,2(j)

must be met for (15) to be nonzero. Note that the sets
(16) are not satisfied for ν

(n)
j,1 = · · · = ν

(n)
j,n . Thus, the

residual signal (15) vanishes also for Volterra operators
G, whose associated symmetric kernels have support
only on their diagonals. These kernels arise in serial
connections of static nonlinear systems preceding LTI
systems.

As illustrated in Figure 2 the second-order Volterra
kernels for nonlinear wave propagation are sparse. They
are mainly occupied along their diagonals. Mleczko et
al. demonstrated in [13] that Volterra kernels identified
from a free microbubble do not share this property. Thus,
(15) serves as a starting-point for further optimizations.
The goal is to find the Volterra kernels gn,sym associated
to the complete signal chain of a DUSI system for both
cases, with UCA microbubbles present and without their
presence. Subsequently, (15) can be tuned to be sensitive
towards the case with UCA microbubbles by the choice
of the input signals x1 and x2.

Conclusion and Outlook
Volterra series are capable to model nonlinear effects en-
countered in DUSI with sufficient accuracy. A solution to
the widely-used Burgers equation in terms of a Volterra
series was derived and its region of convergence was
investigated. Results of the experimental validation were
presented. The application of Volterra series to pulse
subtraction imaging [5] yields well-interpretable results,
which serve as a starting-point for further optimizations.
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